14th Asian Thermal Spray Conference & Expo

November 17-19, 2025 | BPEX, Busan, Korea

Organized by

Co-organized by

Sponsor/Exhibitor

Table of Contents

Welcome Message	5
Committee	6
Plenary Lecture	8
Keynote Lecture	15
Venue	21
Detailed Program	22
Oral Session	23
Monday, November 17	23
Tuesday, November 18	27
Wednesday, November 19	31
Poster Session	32
Sponsor & Exhibitor	34
Partner Directory	35
Abstract	41

Welcome Message

Dear Colleagues, Distinguished Guests, and Friends,

On behalf of the Organizing Committee, it is my great pleasure to welcome you to the 14th Asian Thermal Spray Conference & Exhibition (ATSC 2025), held from November 17 to 19, 2025 at the Busan Port Exhibition & Convention Center (BPEX) in the beautiful coastal city of Busan, Korea.

Under the theme "Be the Next Wave," this year's ATSC aims to explore the next frontiers of thermal spray science and technology from fundamental research to industrial applications, from materials innovation to digital process intelligence.

Our conference brings together researchers, engineers, and industry leaders from around the world to share cutting-edge ideas, foster collaboration, and shape the sustainable future of surface engineering.

We are honored to host an exceptional lineup of Plenary, Keynote, and Invited Speakers, as well as numerous oral and poster presentations that reflect the remarkable diversity and creativity of our global community.

I would also like to express my heartfelt appreciation to all sponsors, exhibitors, and organizing members whose support and dedication have made this event possible.

Busan, with its blend of maritime energy and cultural charm, offers a perfect backdrop for meaningful discussion and friendship. I hope you will enjoy not only the academic program but also the warm hospitality, delicious cuisine, and the spirit of late autumn in Korea.

May ATSC 2025 be a truly inspiring and memorable experience for all of you.

Thank you, and once again, welcome to Busan and to ATSC 2025.

Kee-Ahn Lee

General Chair, ATSC 2025 Committee Chairman, Korea Thermal Spray Association (KTSA) Professor, Inha University

Committee

Organizing Society

Organized by: Korea Thermal Spray Association (KTSA) Co-Organized by: Korea Istitute of Materials Science (KIMS)

Conference Committee

Executive Committee General Chair

Prof. Kee-Ahn Lee, Inha University

General Co-Chairs

Prof. Satoru Takahashi, Tokyo Metropolitan University, Japan

Prof. Hua Li, Chinese Academy of Sciences, China

Prof. Christopher Berndt, Swinburne University of Technology, Australia

Honorary Chair(s)

Prof. Changhee Lee, Hanyang University, South Korea.

Prof. Masahiro Fukumoto, Toyohashi University of Technology, Japan

Prof. Chang-Jiu Li, Xi'an Jiaotong University, China

Secretary General

Dr. Hunkwan Park, Korea Institute of Materials Science

Joint Secretary

Prof. Se-Yun Kim, Kyungnam University

Programing Committee

Dr. Eungsun Byon, Korea Institute of Materials Science

Dr. Yoonsuk Oh, Korea Institute of Ceramic Engineering and Technology

Dr. Hansol Kwon, , Korea Institute of Materials Science

Dr. Sungwon Kim, Korea Institute of Ceramic Engineering and Technology

Dr. Kyeong-Ho Baik, Chungnam National University

Prof. Yeon-gil, Jung, Changwon National University

Dr. Sunghun Lee, Korea Institute of Materials Science

Mr. Seog Keun Oh, Oerlikon Metco Singapore Pte. Ltd. Korea Branch

Organizing Committee

Mr. HeungSoo Moon, SEWON HARDFACING Co., Ltd.

Dr. Sun Hong Park, OMNI COAT Co.,

Mr. Eun Young Choi, WONIK QnC Co., Ltd.

Dr. Byungil Yang, Changwon National University

Dr. Jae-Hyuk Park, Electro Static Technology, Inc.

Dr. Kyun-Tak Kim, Comos Metallizing Co., Ltd.

Mr. Patrick Choo, Bedell Surface Technologies Co., Ltd.

Ms. Meg Lee, Bedell Surface Technologies Co., Ltd.

International Advisory Committee

Prof. Andrew Siao Ming Ang, Swinburne University of Technology, Austria

Prof. S. Bakshi, Indian Institute of Technology Madras, India

Dr. Eungsun Byon, Korea Institute of Materials Science, South Korea

Prof. Frank Gaertner, Helmut Schmidt University, Germany

Prof. Guang-Rong Li, Xi'an Jiaotong University, China

Dr. Hansol Kwon, Korea Institute of Materials Science, South Korea

Prof. Harpreet Singh, Indian Institute of Technology Ropar, India

Prof. Jingyang Wang, Ningbo Inst. Mat. Tech. & Eng., Chinese Academy of Sciences, China

Prof. Kazuhiro Ogawa, Tohoku University, Japan

Dr. Kentaro Shinoda, National Institute of Advanced Industrial Science and Technology (AIST), Japan

Prof. Kyeong Ho Baik, Chungnam National University, South Korea

Prof. Min Liu, Guangdong Academy of Science, China

Prof. Muthusamy Kamaraj, Indian Institute of Technology Madras, India

Prof. Peerawatt Nunthavarawong, King Mongkut's University of Technology North Bangkok, Thailand

Prof. Satoru Takahashi, Tokyo Metropolitan University, Japan

Dr. Satish Tailor, Metallizing Equipment Co. Pvt. Ltd., India

Prof. Shrikant Joshi, University West, Sweden

Dr. Sunghun Lee, Korea Institute of Materials Science, South Korea

Prof. Tatsuya Tokunaga, Kyushu Institute of Technology, Japan

Prof. Yi Liu, Ningbo Inst. Mat. Tech. & Eng., Chinese Academy of Sciences, China

Plenary Lecture 1

Chair: Kee-Ahn Lee (Inha University), Hua Li (NIMTE-CAS)

Chang-Jiu Li (Xi'an Jiaotong University)

Lecture Title: The Strategy of Microstructure Control towards the Advanced Applications of Thermal Spray Ceramic Coating Based on the Critical Bonding Temperature Concept

Lecture Time: 09:45-10:25, Monday, November 17, 2025

Lecture Place: Room A, BPEX

Biography

Prof. Chang-Jiu Li received his B. Sc from Mechanical Department of Xi'an Jiaotong University at 1982, Master degree and Ph.D of Engineering from Osaka University (Japan) in 1986 and 1989. From 1989 to 1992, he worked as Research fellow in Kinki Advanced Materials Processing Institute, Japan. Since December 1992 he works as full professor in Xi'an Jiaotong University.

From 1983, he began his career of study on thermal spraying. His research interests include the coating formation mechanisms such as splat formation and lamellar interface bonding, coating microstructure development, coating microstructure design for high performance applications to wear resistant coatings, corrosion-resistant coatings, TBCs, SOFCs, ASSIB (All Solid State Ion Battery). He has published about 800 technical papers, including over 475 papers in the peer-reviewed international journals, 110 papers in Chinese journal and over 230 papers in the conference proceedings. From 2012, he serves as an associate editor of the Journal of Thermal Spray Technology. In 2017, he was selected as ASM Fellow. In 2019, he was inducted to ASM Thermal Spray Fame of Hall.

Chair: Kee-Ahn Lee (Inha University), Hua Li (NIMTE-CAS)

Frank Gaertner (Helmut Schmidt University)

Lecture Title: From Basics on Cold Spraying to Solutions for Additive

Manufacturing and Repair

Lecture Time: 10:25-11:05, Monday, November 17, 2025

Lecture Place: Room A, BPEX

Biography

Frank Gärtner heads the Laboratory of Surface Technology at Helmut-Schmidt-University Hamburg as part of the Institute of Materials Technology. His expertise concerns the formation of metastable phases, as well as mechanisms of coating formation in thermal spray and cold spray techniques. He has pioneered the field of cold – or kinetic spraying since the late 1990ies and holds an internationally well-recognized expertise on exploring the basic mechanisms and on developing applications as well as spray equipment, the latter in close cooperation with industries. Associated research work combines computational fluid dynamics, modelling of deformation and bonding, "in-flight" diagnostics, and various material and surface characterization techniques.

He has published more than 140 journal and about 80 conference papers (about 10000 citations, h-index of 39). Up to present, he was responsible for about 15 publicly funded R&D projects.

Chair: Kee-Ahn Lee (Inha University), Hua Li (NIMTE-CAS)

Kentaro Shinoda (AIST)

Lecture Title: Advanced Thermal and Kinetic Spray Technologies for

Addressing Societal Challenges

Lecture Time: 11:05-11:45, Monday, November 17, 2025

Lecture Place: Room A, BPEX

Biography

Kentaro Shinoda, Ph.D.
Leader, Coatings and Interface Engineering Research Group
Core Manufacturing Technology Research Institute
National Institute of Advanced Industrial Science and Technology (AIST)

Dr. Kentaro Shinoda received his Ph.D. in Engineering from the University of Tokyo in 2006. During his doctoral studies, he conducted research at the Centre for Advanced Coating Technologies, University of Toronto. He subsequently held postdoctoral appointments at the National Institute for Materials Science (NIMS) in Japan and at the Center for Thermal Spray Research, Stony Brook University, USA.

He joined AIST in 2011 and currently leads the Coatings and Interface Engineering Research Group within the Core Manufacturing Technology Research Institute. Dr. Shinoda is the inventor of hybrid aerosol deposition (HAD), a novel ceramic coating technology advancing low-temperature processing for thermal and environmental barrier coatings and remanufacturing toward a circular economy. He has published over 58 peer-reviewed papers and holds 11 granted patents. His contributions have been recognized with multiple awards, including the Best Paper Award at the International Thermal Spray Conference.

He serves as Vice President of the Japan Thermal Spray Society, sits on the Editorial Board of the Journal of Thermal Spray Technology, and is also a Visiting Professor at Shibaura Institute of Technology.

Chair: Kazuhiro Ogawa (Tohoku University), Shrikant Joshi (University West)

Shrikant Joshi (University West)

Lecture Title: Liquid Feedstock Thermal Spraying: Unlocking the Next

Frontier?

Lecture Time: 09:30-10:10, Tuesday, November 18, 2025

Lecture Place: Room A, BPEX

Biography

Prof. Shrikant Joshi is currently a Professor in the Department of Engineering Science at University West in Trollhättan, Sweden. He has over 30 years of experience in areas spanning Surface Engineering, Laser Materials Processing and Additive Manufacturing. He is a Chemical Engineer by academic training, having obtained his M.S. and Ph.D. degrees from the Rensselaer Polytechnic Institute and University of Idaho, respectively, in USA. Prior to moving to Sweden in 2015, he has had long stints at two premier federally funded materials' research laboratories in India. His current areas of research are solution precursor and suspension thermal spraying, powder-liquid 'hybrid' thermal spraying and high velocity air fuel (HVAF) spraying. His work has led to many industrial applications, over a dozen patent submissions and more than 250 publications in peer-reviewed journals. He is a Fellow of ASM International, the Institute of Materials, Minerals & Mining (IoM3) and the Indian National Academy of Engineering. Earlier this year, he was also inducted into the Hall of Fame of the ASM International's Thermal Spray Society.

Chair: Kazuhiro Ogawa (Tohoku University), Shrikant Joshi (University West)

Yeon-gil Jung (Changwon National University)

Lecture Title: TBC and EBC Technologies for Aviation Gas Turbine

Engine

Lecture Time: 10:10-10:50, Tuesday, November 18, 2025

Lecture Place: Room A, BPEX

Biography

Yeon-Gil Jung is a professor of the Department of Advanced Materials Convergence Engineering at Changwon National University since 1999. He received his PhD in inorganic materials science and engineering from Hanyang University. He was a visiting scientist at NIST during 1997—1999 and 2003—2004, and at IUPUI during 2013—2017. From July 2021 to May 2025, He served as the president of the Korea Institute of Ceramic Engineering and Technology. Professor Jung's research interests include the design and manufacturing of ceramic materials, thermal barrier coatings, ceramic-metal composites, layered material design and manufacturing, and material evaluation. He has contributed to over 450 publications, 60 patents, and active participation in various national-level institutional committees.

Chair: Eungsun Byon (Korea Institute of Materials Science), Kazuhiro Ogawa (Tohoku University)

Jingyang Wang (IMR-CAS)
Lecture Title: Advancements of High Temperature Coating for SiCf/SiC Composite

Lecture Time: 09:30-10:10, Wednesday, November 19, 2025

Lecture Place: Room A, BPEX

Biography

Jingyang Wang is the Vice President of Liaoning Academy of Materials and the director of Institute of Coating Technology for Hydrogen Gas Turbines. He is also a distinguished professor at the Institute of Metal Research, CAS, China. His research interests are focused on fundamental exploration and technological developments of structure ceramics, ceramic-matrix-composites, and high temperature coating for extreme environment applications. He received many prestigious recognitions and awards, represented by Academician of Word Academy of Ceramics, Fellow of The American Ceramic Society, Fellow of ASM International, Fellow of The European Ceramic Society, Acta Materialia Silver Medal Award, ACerS John Jeppson Award, Samuel Geijsbeek PACRIM International Award, ACerS ECD Bridge Building Award, ACerS Global Star Award, and National Leading Talent for Science and Technology Innovation (China), National Leading Talent of Young and Middle-aged Scientists (China), National/Ministry Science and Technology Progress Award (China, 2011/2010) and Liaoning Natural Sciences Award (China).

Chair: Eungsun Byon (Korea Institute of Materials Science), Kazuhiro Ogawa (Tohoku University)

Peerawatt Nunthavarawong (King Mongkut's University of Technology North Bangkok)

Lecture Title: High-Temperature Wear and Thermal Properties of Plasma-Sprayed Mullite-Based Nanocomposite Coatings

Lecture Time: 10:10-10:50, Wednesday, November 19, 2025

Lecture Place: Room A, BPEX

Biography

Peerawatt Nunthavarawong is a researcher in the field of mechanical and production engineering, specializing in tribology, surface engineering, and materials performance. He received his Ph.D. and Post-Doctoral Certificate in Applied Tribology from the University of the Witwatersrand, Johannesburg, South Africa. He also holds an M.Eng. in Production Engineering and a B.Sc. in Mechanical Engineering (Technical Education Program) from King Mongkut's Institute of Technology North Bangkok (KMUTNB), Thailand. His research focuses on tribology and wear of materials, engineering lubrication, contact mechanics, damage and failure of materials, materials characterization, thermal spraying, and cold spray deposition. His recent work integrates experimental and analytical approaches to understand surface interactions and develop advanced surface engineering solutions for improved reliability and performance.

Keynote Lecture 1

Chair: Frank Gaertner (Helmut Schmidt University), Guang-Rong Li (Xi'an Jiaotong University)

Yuji Ichikawa (Tohoku University)

Lecture Title: Dynamics of Impact-Induced Bonding: Insights from Single-Particle Impact Experiments and Site-Specific Micromechanical Analysis

Lecture Time: 13:00-13:30, Monday, November 17, 2025

Lecture Place: Room A, BPEX

Biography

Yuji Ichikawa is an Associate Professor at the Fracture and Reliability Research Institute, Tohoku University, where he studies mechanics of materials, interface fracture, and surface engineering, with emphasis on cold spray and impact-induced bonding. He received his Ph.D. from Tohoku University and has held visiting appointments at Mines Paris and Cornell University. His recent work integrates in situ microparticle impact testing, micromechanics, and electron microscopy to elucidate bonding and strength at metal interfaces. He served as a JST PRESTO researcher (2020–2024) and has received multiple awards from the Japan Thermal Spraying Society and the Society of Materials Science, Japan. He is a board member of the Japan Thermal Spraying Society and contributes to committees of JSME and JSMS.

Chair: Chang-Jiu Li (Xi'an Jiaotong Univ.), Yi Liu (NIMTE-CAS)

Hua Li (NIMTE-CAS)

Lecture Title: Solution Precursor Plasma-Sprayed Ce-Doped Bi₂O₃ Coating with Tuned Bandgap for Enhanced Visible-Light Photocatalytic Activities

Lecture Time: 13:00-13:30, Monday, November 17, 2025

Lecture Place: Room B, BPEX

Biography

Dr. Hua Li is a professor of Ningbo Institute of Materials Technology and Engineering, Chinese Academy of Sciences, China. Dr. Li earned his B.Eng. and M.Eng. from Xi'an Jiaotong University China in 1994 and 1997 respectively. He then joined Nanyang Technological University Singapore for his PhD study on biomedical coatings and got his PhD degree in 2002. Afterwards, Dr. Li continued his research in thermal spray as Research Fellow and later SMF Research Fellow in Nanyang Technological University. In 2006, he joined Brookhaven National Laboratory in New York working on structures of biomolecules. In 2010, Dr. Li returned back China and joined Chinese Academy of Sciences as a full professor to setup his advanced coatings & additive manufacturing laboratory. Dr. Li's laboratory is devoted to deep commitment to both fundamental and applied research on new coating materials, surface chemistry and physics, and design and thermal/cold spray construction of novel functional coatings.

Chair: Kazuhiro Ogawa (Tohoku University), Shrikant Joshi (University West)

Guang-Rong Li (Xi'an Jiaotong University)

Lecture Title: A Bimodal-Structured Coating with Columnar/Lamellar Trans-Scale Features for Strain-Tolerant and Thermal Insulative Performances

Lecture Time: 11:10-11:40, Monday, November 17, 2025

Lecture Place: Room A, BPEX

Biography

He is an associate professor in Xi'an Jiaotong University. His research focus on structure designs of plasma sprayed thermal protective coatings for long life span and high thermal insulation. Supported by the NSFC and other funds, he has published 40 more papers (including 4 ESI highly cited papers) and held 20 more issued patents. He has gave 10 more invited talks in related high level conferences (including ATSC 2024 et al.). He is a member of the Young Elite Scientists Sponsorship Program by CAST. In 2019, he won the First Prize in Science and Technology of Shaanxi Higher Education Institutions.

Chair: Kazuhiro Ogawa (Tohoku University), Shrikant Joshi (University West)

Tatsuya Tokunaga (Kyushu Institute of Technology)

Lecture Title: Effect of Cooling Rate after Fusing on the Microstructural

Evolution of a Ni-Based Self-Fluxing Alloy

Lecture Time: 11:40-12:10, Tuesday, November 18, 2025

Lecture Place: Room A, BPEX

Biography

Dr. Tatsuya Tokunaga is a professor at Kyushu Institute of Technology, Japan. He received B.S. and M.S. degrees from Nagoya University in Nuclear Engineering and his Ph.D. degree from Kyushu Institute of Technology in Materials Science and Engineering. His main research interests are phase equilibria, phase transformation and computational thermodynamics in alloys based on the CALPHAD method and their applications to engineering materials.

Chair: Xiaohua Feng (NIMTE-CAS), Hwasung Yeom (POSTECH)

Sunghun Lee (Korea Institute of Materials Science)

Lecture Title: Pre-Oxidation Effects on the Thermal-Fatigue Behavior of

Thermal Barrier Coatings

Lecture Time: 13:00-13:30, Tuesday, November 18, 2025

Lecture Place: Room A, BPEX

Biography

Dr. Sunghun Lee, born in 1971 in Gimhae, South Korea, is a Principal Researcher at the Extreme Environment Coating Team of the Extreme Materials Research Institute, Korea Institute of Materials Science (KIMS). After completing his B.S. and M.S. in Materials Engineering at Changwon National University, he began his research career at KIMS in 1996 and earned his Ph.D. in Materials Engineering from Tohoku University in 2009.

With more than 30 years of experience, Dr. Lee specializes in surface engineering for extreme temperature environments. His research focuses on providing advanced coating solutions to enhance the reliability of systems and components operating under high thermal stress. His technical expertise includes high-temperature oxidation behavior, thermo-fluid simulations, and the development of advanced ceramic and metallic coatings.

He has been a driving force behind Korea's self-reliance in aerospace-grade thermal protection technologies, including Thermal Protection Systems (TPS), Thermal Barrier Coatings (TBC), and Thermal Management Coatings (TMC). Notably, he named his surface engineering solution for supersonic environments 'Mach-Shield'. He is also actively involved in developing highly endurable coatings for plasma-resistant and wear-resistant conditions. Dr. Lee is well-versed in PVD, thermal spray, and EB-PVD thick film processing technologies and currently serves as Vice President of the Korea Thermal Spray Association (KTSA). He is also playing a key role in building the Extreme Materials Characterization Research Complex within KIMS.

Chair: Tatsuya Tokunaga (Kyushu Institute of Technology), Chunjie Huang (Northwestern Polytechnical University)

Kee-Ahn Lee (Inha University)

Lecture Title: Fe-Ce-Mo-Based Metamorphic Alloy Coatings with Excellent Wear and Corrosion Resistances Fabricated via Thermal Spray Process

Lecture Time: 13:00-13:30, Tuesday, November 18, 2025

Lecture Place: Room B, BPEX

Biography

Education

1993.02: Bachelor, Dep. of Mater. Sci. & Eng., KAIST (Korea Advanced Institute of Sci. and Tech.)

1995.02: Master, Dep. of Mater. Sci. & Eng., POSTECH (Pohang University of Sci. and Tech.)

1999.02: PhD, Dep. of Mater. Sci. & Eng., POSTECH (Pohang University of Sci. and Tech.), Korea

Professional Experience

2024.01 - present : President, KTSA (Korean Thermal Spray Association), Korea

2022.01- present : Executive Vice President, KPMI (Korean Powder Metallurgy & Materials Institute), Korea

2025.01- present: Vice President, KIM (Korean Institute of Metals and Materials), Korea

2017.03 – present : Professor, Dep. of Materials Science & Engineering, Inha University, Korea

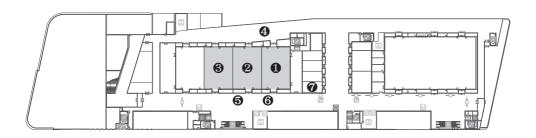
2005.03-2017.02: Professor, Dep. of Materials Science & Engineering, Andong National University

2009.02-2010.01: Visiting Professor, UCF (University of Central Florida), USA

2001.01–2005.02 : Senior Researcher, RIST (Research Institute of Industrial Sci. & Tech.), Korea

1999.12-2001.01 : Post Doc. Fellow, MIT (Massachusetts Institute of Technology), USA

* Published papers ~ 340, H-index 40


Venue

BPEX, Busan

Address: 5th floor, 206, Chungjang-daero, Dong-gu, Busan,

48751, Republic of Korea Tel: +82-51-400-1280

① Event Hall A	Opening, Plenary, Keynote, Scientific Session Room A
② Event Hall B	Keynote, Scientific Session Room B
③ Event Hall C	Welcome Reception, Lunches, Conference Banquet
4 Event Hall Sea Side Lobby	Poster Session, Exhibition
© Event Hall Main Lobby	Registration Desk
© Event Hall Main Lobby	Exhibition
7 Meeting Room 6	Special Session, Board Meeting

Detailed Program

	Day 1 (Mo	n, Nov 17)	Day 2 (Tu	e, Nov 18)	Day 3 (Tue, Nov 19)
	Room A	Room B	Room A	Room B	Room A
09:30	Opening				
09:40	Opening		Plenary 4		Plenary 6
09:50			Shrikant Joshi		Jingyang Wang
10:00	Plenary 1				
10:10	Chang-Jiu Li				Plenary 7
10:20			Plenary 5		Peerawatt
10:30 10:40	Dlaman, O		Yeon-gil Jung	Cassial Cassian	Nunthavarawong
10:50	Plenary 2 Frank Gaertner			Special Session (Meeting Room 6)	
11:00	- Trank outriner		Coffee Break	(Meeting Noon o)	Coffee Break
11:10					Contrib 22
11:20	Plenary 3		Keynote 3		Peng-Yan Shi
11:30	Kentaro Shinoda		Guang-Rong Li		Closing (Awards & Next ATSC)
11:40					7
11:50			Keynote 4		
11:55			Tatsuya Tokunaga		
12:00				-	
12:10		nch			
12:20	(Roo	m C)	Lui	nch	
12:30				m C)	
12:40					
12:50 13:00					-
13:10	Keynote 1	Keynote 2	Keynote 5	Keynote 6	
13:20	- Yuji İchikawa	Hua Li	Sunghun Lee	Kee-Ahn Lee	
13:30	Invited 1	Invited 6	Invited 11	Invited 14	
13:40	Hiroki Saito	Xiaohua Feng	Kwangyong Park	Jirasak Tharajak	
13:50		-	Invited 12	Contrib 14	
14:00	_	-	Keekeun Kim	Min-Soo Nam	
14:10	Contrib 1	Contrib 4	Invited 13	_	
14:20	Wataru Kai	Yang Rui	Hansol Kwon		
14:30	Contrib 2	Invited 8	_	_	
14:40	Gil-Ju Na	Mohammed Shahien			-
14:50	Contrib 3 Luca Klingler	Contrib 5 Haruto Oishi	Coffee	e Break	
15:00 15:10		Break	Contrib 17	Invited 15	
15:20	Invited 3	Invited 9	Hyokyeong Kim	Sen-Hui Liu	
15:30	Hwasung Yeom	Shuo Yin	Contrib 18	Contrib 20	
15:40	Invited 4	Invited 10	Tae-Jun Park	Hyuk Jun Lee	
15:50	Chunjie Huang	Sung-Gyu Kang	Contrib 19	Contrib 21	1
16:00	Invited 5	Contrib 9	Jae-Woo Cho	Xin-Ru Li	
16:10	Hyuk Jun Lee	Byeongryun Jeon			
16:20	Contrib 6	Contrib 10			
16:30	Kyung-Un Won	Julio Gutierrez de Frutos			
16:40	Contrib 7	Contrib 11			
16:50	Jim Merlin Manoo Klutta	Byeong-il Min			
17:00 17:10	Contrib 8 Jingze Sun	Contrib 12 Byeongryun Jeon	Poster	Session	
17:10	Jingze Juli	Contrib 13			
17:30	1	Julio Gutierrez de Frutos			
17:40	-	Janen 12 at 11 at 100			
17:50	1	-			1
18:00~20:00	Welcome	Reception	Conference	e Banquet	
10.00~20.00	(Roo	m C)	(Roo	m C)	

Oral Session

Monday, No	vember 17	
Session I		Room A 09:30~11:45
	Chair: Kee-A	hn Lee (Inha Univ.), Hua Li (NIMTE-CAS)
09:30-09:45	Opening Remarks	
09:45-10:25	9,	
10:25-11:05	Plenary From Basics on Colo Manufacturing and Repair Frank Gaertner (Helmut Schmidt U	d Spraying to Solutions for Additive niversity)
11:05-11:45	Plenary Advanced Thermal a Addressing Societal Challenge Kentaro Shinoda (AIST)	and Kinetic Spray Technologies for s
Session II C	old Spray / Kinetic Spray I	Room A 13:00~15:10
		k Gaertner (Helmut Schmidt University), uang-Rong Li (Xi'an Jiaotong University)
12:00 12:20	Dynamics of Immed I	aduand Danding: Insights from Cingle

13:00-13:30	Keynote Dynamics of Impact-Induced Bonding: Insights from Single-Particle Impact Experiments and Site-Specific Micromechanical Analysis Yuji Ichikawa (Tohoku University)
13:30-13:50	Invited Cold Spray Metallization of Thermoplastic CFRP for Enhanced Lightning Strike Resistance Hiroki Saito (Tohoku University)
13:50-14:10	Invited High Quality Cold Spray Cu Metallization of Ceramics with Widened Deposition Window Enabled via Ti or Cu-Ti Buffer Layer Xiao-Tao Luo (Xi'an Jiaotong University)
14:10-14:30	Adhesion and Lightning Strike Resistance of Cold-Sprayed Aluminum Repair Coatings on CFRTP Wataru Kai (Tohoku University)

Next Page □

14:30-14:50	Dynamic Flattening and Microstructural Changes in Aluminum Particles under High Strain Rates Gil-Ju Na (Tohoku University)
14:50-15:10	Improved Al6061 Deposit Performance by In-situ Induction Heating during Cold Gas Spraying Luca Klingler (Helmut Schmidt University)

Session III | Solution/Suspension & Hybrid Processes Room B 13:00~15:10 Chair: Shrikant Joshi (University West) 13:00-13:30 Keynote Solution Precursor Plasma-Sprayed Ce-Doped Bi₂O₃ Coating with Tuned Bandgap for Enhanced Visible-Light Photocatalytic Activities Hua Li (NIMTE-CAS) 13:30-13:50 Invited Synergistic Feed Rate & Microstructure Design Enables Superior Microwave Absorption in Mechanically Robust Flame-Sprayed BaFe₁₂O₁₉/CS/PI Coatings Xiaohua Feng (NIMTE-CAS) Fabrication of Visible-Light Active Ce-Doped Bi₂O₃ Coatings via Single-14:10-14:30 Step Solution Precursor Plasma Spraying Yang Rui (NIMTE-CAS) 14:30-14:50 Invited Hybrid Aerosol Deposition from Dense Microstructure to Covalent Bonded Materials Mohammed Shahien (AIST) 14:50-15:10 Formation of ZrB₂-based Ultra-high Temperature Ceramics Coatings by Aerosol Deposition Haruto Oishi (Yokohama National University)

	Cold Spray / Kinetic Spray II	Room A 15:20~17:20
Chair: Ke	ntaro Shinoda (AIST), Sunghun Lee (Korea	Institute of Materials Science)
15:20-15:40	Invited Cold Spray Technologies for Nuc Hwasung Yeom (POSTECH)	clear Energy Applications
15:40-16:00	Invited Development of Al6061-NiTi Assisted by Friction Stir Processing Chunjie Huang (Northwestern Polytechnical Uni	
16:00-16:20	Invited Application of Cold Sprayed Coar Hyuk Jun Lee (Cerectron)	tings in Automotive Industry
16:20-16:40	Microstructure and Tribological Property Fe-Based Amorphous Alloy Coatings Kyung Un Won (Inha University)	Correlations in Cold-Sprayed
16:40-17:00	Influence of Laser Surface Heat Treatme of Deformed Al6061 Bulk Material and Co Jim Merlin Manoo Klutta (Helmut Schmidt Uni	old Spray Deposits
17:00-17:20	Bond Coat Material for Cold Sprayed Poly Jingze Sun (Tohoku University)	ymer Film Formation
Session V P	rocess Diagnostics and Modeling	Room B 15:20~17:40
	Chair: Mohammed Shahien	
		(AIST), Yang Rui (NIMTE-CAS)
15:20-15:40	Invited Real-time High-Velocity Visual Impact on Metal Substrate in Cold Spray Shuo Yin (Trinity College Dublin)	(AIST), Yang Rui (NIMTE-CAS) lization of Ceramic Particle
15:20-15:40	Invited Real-time High-Velocity Visual Impact on Metal Substrate in Cold Spray	lization of Ceramic Particle ties of APS Y ₂ O ₃ Coatings via
	Invited Real-time High-Velocity Visual Impact on Metal Substrate in Cold Spray Shuo Yin (Trinity College Dublin) Invited Evaluation of Mechanical Proper Micropillar Compression Test	lization of Ceramic Particle ties of APS Y ₂ O ₃ Coatings via sity) of a New Cascaded Plasma

Next Page ightharpoonup

ATSC 2025

16:40-17:00	Numerical and Experimental Study of In-flight MgAl ₂ O ₄ Particles in Atmospheric Plasma Spraying under Arc Current Variation Byeong-il Min (Korea Institute of Materials Science)
17:00-17:20	Automated Porosity Evaluation of Thermal Barrier Coatings via CNN- Based Semantic Segmentation Byeongryun Jeon (Korea Institute of Materials Science)
17:20-17:40	3D CFD Simulation of Substrate Angle Influence on Bow Shock Effects in Cold Spray (CS) Julio Gutierrez De Frutos (Helmut Schmidt University)

Tuesday, November 18 Special Session

Meeting Room 6 09:00-11:00

	Chair: Kyun Tak Kim (Cosmos Metallizing Co., Ltd)
09:00-09:15	Selecting Candidates in Rare Earth Co-Doped Zirconia Systems for Thermal Barrier Coating Application Seongwon Kim (Korea Institute of Ceramic Engineering and Technology)
09:15-09:30	Computational Screening of Rare-Earth-Doped Zirconia for Thermal Barrier Coatings Inseong Bae (Soongsil University)
09:30-09:45	Analysis of the Degradation Behavior of 8YSZ in a High-Temperature Hydrogen Environment Tae Mon Ko (Kyonggi University)
09:45-10:00	Thermal Spray Coating Powder Technology Heungsoo Moon (Sewon-Hardfacing)
10:00-10:15	Isothermal Oxidation Behavior and Thermal Cycle Lifetime of Thermal Barrier Coatings as a Function of Bond Coat Process and Composition Hansol Kwon (Korea Institute of Materials Science)
10:15-10:30	Kinetic Modeling of Oxidation/Diffusion Behavior Throughout Thermal Barrier Coating in High Temperature Condition Dae Eon Hwang (Seoul National University)
10:30-10:45	Finite-Element Analysis of Thermal Stresses Driven by Internal Temperature Fields in Thermal Barrier Coating

Session VI	Room A 09:30~12:1
Chair: Kazı	uhiro Ogawa (Tohoku University), Chang-Jiu Li (Xi'an Jiaotong University
09:30-10:10	Plenary Liquid Feedstock Thermal Spraying: Unlocking the Next Frontier? Shrikant Joshi (University West)
10:10-10:50	Plenary TBC and EBC Technologies for Aviation Gas Turbine Engine Yeon-Gil Jung (Changwon National University)
11:10-11:40	Keynote A Bimodal-Structured Coating with Columnar/Lamellar Trans-Scale Features for Strain-Tolerant and Thermal Insulative Performances Guang-Rong Li (Xi'an Jiaotong University)
11:40-12:10	Keynote Effect of Cooling Rate after Fusing on the Microstructura Evolution of a Ni-based Self-fluxing Alloy Tatsuya Tokunaga (Kyushu Institute of Technology)
Session VII	TBCs & High-Temp Coatings I Room A 13:00~14:3
Session VII	TBCs & High-Temp Coatings I Room A 13:00~14:3 Chair: Xiaohua Feng (NIMTE-CAS), Hwasung Yeom (POSTECH
13:00-13:30	
	Chair: Xiaohua Feng (NIMTE-CAS), Hwasung Yeom (POSTECH Keynote Pre-Oxidation Effects on the Thermal-Fatigue Behavior of Thermal Barrier Coatings
13:00-13:30	Chair: Xiaohua Feng (NIMTE-CAS), Hwasung Yeom (POSTECH Keynote Pre-Oxidation Effects on the Thermal-Fatigue Behavior of Thermal Barrier Coatings Sunghun Lee (Korea Institute of Materials Science) Invited Doosan Enerbility's Thermal Barrier Coating Technologies for Advanced Next-Generation Gas Turbines
13:00-13:30 13:30-13:50	Chair: Xiaohua Feng (NIMTE-CAS), Hwasung Yeom (POSTECH Keynote Pre-Oxidation Effects on the Thermal-Fatigue Behavior of Thermal Barrier Coatings Sunghun Lee (Korea Institute of Materials Science) Invited Doosan Enerbility's Thermal Barrier Coating Technologies for Advanced Next-Generation Gas Turbines Kwangyong Park (Doosan Enerbility) Invited High-Temp Coating Systems for Aero Engines

Session VIII	Wear/Corrosion	Room B 13:00~14:50
	•	(Kyushu Institute of Technology), vestern Polytechnical University)
13:00-13:30	Keynote Fe-Ce-Mo-Based Metamorph Wear and Corrosion Resistances F Process Kee-Ahn Lee (Inha University)	, ,
13:30-13:50	Invited Damage-Tolerant Surface F Tubes via FeAl Intermetallic Layers Fo Substrate Jirasak Tharajak (Rajamangala University o	
13:50-14:10	Slag Corrosion Resistance of Yb-silica Coatings Min-Soo Nam (Korea Institute of Ceramic Ed	
14:10-14:30	Improving the Corrosion Resistance on Deposits by Pulsed Laser Heat Treatm Jihao Shen (Xi'an Jiaotong University)	. , ,

Chair: Sung-Gyu Kang (Gyeongsang National University), Shuo Yin (Trinity College Dublin) 15:10-15:30 MAX Phase as Bond Coats in Thermal Barrier Coating System Hyokyeong Kim (Soongsil University) 15:30-15:50 Phase Transformation Behavior and High-Temperature Durability of Rare Earth Oxide Co-Stabilized ZrO₂ Tae-Jun Park (Korea University) 15:50-16:10 Research on Oxidation Behavior of Ni-Al Coatings Fabricated by Twin Wire Arc Spray Jae Woo Cho (Korea Institute of Materials Science)

Session X Functional Coatings		Room B 15:10~16:10
	Chair: Jingyang Wang (IMR-CAS), H	iroki Saito (Tohoku University)
15:10-15:30	Invited Multiphase Flows and Deposit (50–200 Pa) and an Atmospheric Long (ALPS) Sen-Hui Liu (Xi'an Jiaotong University)	
15:30-15:50	Cold Spray Coating for Biomedical Applic Hyuk Jun Lee (Cerectron)	cations
15:50-16:10	Examination into Intersplat Bonding of A NiCrCuMoB High Entropy Alloy Coating Xin-Ru Li (Xi'an Jiaotong University)	Atmospheric Plasma-sprayed

Wednesday, November 19

Session XI	Room A 09:30~10:50, 11:10~11:50
	Chair: Eungsun Byon(Korea Institute of Materials Science), Kazuhiro Ogawa (Tohoku University)
09:30-10:10	Plenary Advancements of High Temperature Coating for SiCf/SiC Composite Jingyang Wang (IMR-CAS)
10:10-10:50	Plenary High-Temperature Wear and Thermal Properties of Plasma- Sprayed Mullite-Based Nanocomposite Coatings Peerawatt Nunthavarawong (King Mongkut's University of Technology North Bangkok)
11:10-11:30	Toughening of Plasma-Sprayed Ceramic Coatings via Carbon Nanotube Reinforcement and Controlled Inter-Splat Bonding Peng-Yan Shi (Xi'an Jiaotong University)
	Closing (Awards & Next ATSC)

Poster Session

P1	Hierarchical Microstructure-Mechanical Property Correlations in Superior Strength 5 wt% Cr Cold-Work Tool Steel Manufactured by Direct Energy Deposition Kyung Un Won (Inha University)
P2	Optimizing Electrostatic Chuck Performance through ZrO ₂ /Al ₂ O ₃ ratio and Doping Components (SiO ₂ and Y ₂ O ₃) Seungho Baek (Electro Static Technology, Inc.)
P3	Fabrication, Microstructure, and Mechanical Properties of Fe-16Mn-10Al-5Ni 0.86C (wt.%) Lightweight Steel Manufactured by Directed Energy Deposition Soobin Kim (Inha University)
P4	Influence of Wire Arc Additive Manufacturing Induced Microstructure or Elevated-Temperature Compression of Ti-6Al-4V Soobin Kim (Inha University)
P5	Deposition Behavior and Microstructural Characterization of Ti-6Al-4V/Al ₂ O Functionally Graded Materials using Directed Energy Deposition(DED) <i>Tae-Hyeon Kim (Kyungnam University)</i>
P6	Development of a High-Performance Abradable Coating with Thermal and Structural Stability Lee Youngseo (SHINHWA METAL CO., LTD.)
P7	Development of Oxidation-Resistant Silicide and Aluminide Diffusion Coatings for Aerospace and Power Generation Components Yoon Sangin (SHINHWA METAL CO., LTD.)
P8	Spheroidization of Titanium Powders by using a Reverse-polarity Plasma Torch with an Exit Nozzle Jun-Ho Seo (Jeonbuk National University)
P9	Gradient Cooling Approach in Vacuum Plasma Spray Coating Process for Crack Formation Control in ZrC Coating Layers on Carbon-carbon Composite Ho Seok Kim (Jeonbuk National University)
P10	Enthalpy Probe Measurement and Numerical Analysis on the Thermal Plasma Jets Generated by a Reverse-polarity Plasma Torch with an Exit Nozzle Jun-Ho Seo (Jeonbuk National University)

- P11 Machine-Learning Interatomic Potential for Temperature-Dependent Properties of Nb₂AlC MAX Phase as a Bond Coat Hayoung Son (Soongsil University)
- P12 Effect of APS Process Parameter Control on the Microstructure and Thermal Fatigue Characteristics of Thermal Barrier Coatings

 Hongbin Cheng (Changwon National University)
- P13 Enhanced Oxidation Resistance of ZrC through Multi-Layer Coatings: Ab Initio Calculation of Oxygen Diffusion Pathways

 Jaewon Choi (Soongsil University)
- P14 Mixed Oxide Formation in NiCoCrAlY Powders and Thermal-Sprayed Coatings: Influence of Heat Exposure during Processing Sang-In Kim (Kyungnam University)
- P15 Study on Bond Materials for Protective UHTC Layers on Graphite by Air Plasma Spraying Sik Chol Kwon (BST)
- P16 Influence of Ammonia Combustion Atmosphere on the Durability of Metallic Bond Coat in Thermal Barrier Coating Sohee Baek (Changwon National University)
- P17 Life Assessment of 8% Yttria-Stabilized Zirconia (YSZ) Thermal Barrier Coating (TBC) Through Isothermal and Thermal Cycling Tests

 Somi Lee (Seoul National University of Science and Technology)
- P18 CFD Analysis of Particle Heating in VPS of MCrAlY under Ar–H2 Mixed Plasmas Byeongryun Jeon (Korea Institute of Materials Science)
- P19 Analysis of Oxidation Behavior According to the Addition of Ta or Hf/Si in Thermal Barrier Coating Bond Coat Powder Su-Han Bae (Kyungnam University)
- P20 Granular Manufacturing Technology and APS Coating and Evaluation Study for Yb-Disilicate Spray Coating for Environmental Barrier Coating Jiyoo Kim (Sewon-Hardfacing)

Sponsor & Exhibitor

SPONSORS - INDUSTRIES

Platinum Sponsor

Gold Sponsor

Silver Sponsor

Special Session

SPONSORS - GOVERNMENT AGENCY

EXHIBITORS

Partner Directory

창성

Chang Sung Corporation

Address	320 Seunggicheon-ro, Namdong-gu, Incheon		
Homepage	https://www.changsung.com/		
Contact	임효정 (HyoJung Imh)	Positon	
TEL	+82-32-450-8696	Fax	+82-32-450-8870
Mobile	+82-10-9068-9280	E-mail	hjimh@changsung.com

원익 QnC

WONIK QnC

Address	1504,202,143, Dontangambaesan-ro, Hwaseong-si, Gyeonggi-do, Korea		
Homepage	https://www.wonikqnc.com/ko/		
Contact	배강빈(Kang-Bin Bae), 최은영(Eun-Young Choi)	Positon	
TEL	+82-10-6888-5327	Fax	+82-31-8038-9104
Mobile	+82-10-6888-5327	E-mail	kbbae@wonik.com

아토메탈테크코리아

ATTOMETAL TECH KOREA INC.

atto metal

Address	82, Hwanggeum 4-ro, Yangchon-eyp, Gimpo-si, Gyeonggi-do		
Homepage	http://attometal.co.kr/html/main.html		
Contact	김태우(TaeWoo Kim)	Positon	
TEL	+82-31-986-9988	Fax	+82-31-996-2456
Mobile	+82-10-6650-8485	E-mail	tw.kim@attometal.com

싸이노스

CINOS

CINOS

Address	517-19, Samcheonbyeongma-ro, Paltan-myeon, Hwaseong-si, Gyeonggi-do, Republic of Korea		
Homepage	https://www.cinoseng.com/		
Contact	이명우(Myung-Woo Lee)	Positon	
TEL	+82-10-6435-0898	Fax	+82-31-366-3394
Mobile	+82-10-6435-0898	E-mail	mwlee@cinoseng.com

AMT KOREA

AMT KOREA

Address	62–20, Seobu-ro 396beon-gil, Jinyeong-eup, Gimhae-si, Gyeongsangnam-do, Korea		
Homepage	www.amtkorea.biz		
Contact	이주형(Joohyong Lee)	Positon	
TEL	+82-55-723-3004	Fax	+82-55-723-3599
Mobile	+82-10-4124-8058	E-mail	amtjoohyong@naver.com

(주)코미코

KoMiCo

Address	KoMiCo 23, Gongdan 2-ro, Anseong-si, Gyeonggi-do, Republic of Korea		
Homepage	https://www.komico.com/kr/index.php		
Contact	주현재(Hyeonjae Ju) Positon		
TEL	+82-31-8024-9218	Fax	+82-31-677-8830
Mobile	+82-10-9105-3905	E-mail	Hyeonjae.ju@komico.com

한솔아이원스(주)

Hansol IONES Co., Ltd

한솔아이원스주식회사

Address	2061 Anseong-daero, Gosam-myeon, Anseong-si, Gyeonggi-do, Republic of Korea				
Homepage	https://hansoliones.com/kr/company/greeting.php				
Contact	송채원(Chaewon Song)	Positon			
TEL	+82-31-238-7785	Fax	+82-31-677-8159		
Mobile	+82-10-2864-4264	E-mail	chaewon.song@hansol.com		

(주)**신화금속**

SHINHWA METAL CO.,LTD.,

Address	10, Dasan-ro 105beon-gil, Saha-gu, Busan, Korea				
Homepage	http://www.shinhwametal.co.kr/				
Contact	박희진(Hee-Jin Park)	Positon			
TEL	+82-51-266-6404~7	Fax	+82-51-266-6408		
Mobile	+82-10-4438-6435	E-mail	shrnd200@shmetal.co.kr		

(주)에스에이치코리아

SH KOREA

Address	67, Songma-ro, 52beon-gil, Daegot-myeon, Gimpo-si, Gyeonggi-do				
Homepage	https://www.shkorea.com				
Contact	이시창 (Sichang Lee) Positon				
TEL	+82-1600-8578	Fax	+82-31-624-1539		
Mobile	+82-10-5222-9405	E-mail	sichang@shkorea.com		

ATSC 2025

EV레이저

EVLASER

Address	313, GUNPO IT VALLEY, 17, Gosan-ro 148beon-gil, Gunpo-si, Gyeonggi-do, Korea				
Homepage	https://evlaser.co.kr/about/ci.php				
Contact	정보나(Bona Jung)	Positon			
TEL	+82-31-452-9860	Fax	+82-31-452-9862		
Mobile	+82-10-9133-3659	E-mail	hsjung@evlaser.co.kr		

지<mark>올코리아</mark> JEOL KOREA

Address	(AJ Bldg., 6F)9, Jeongui-ro 8-gil, Songpa-gu. Seoul, KOREA				
Homepage	www.jeol.co.kr				
Contact	유수민(SooMin Ryu)	Positon			
TEL	+82-2-511-5501	Fax	+82-2-511-2635		
Mobile	+82-10-4229-2369	E-mail	smyou@jeol.co.kr		

(주)**성욱표면처리부문**

SUNGWOOK

Address	204, Somang Park-ro, Siheung-si, Gtenggi-do			
Homepage	http://sung-wook.co.kr/			
Contact	이태규(Taegyu Lee) Positon			
TEL	+82-31-499-2021	+82-31-499-2025		
Mobile	+82-10-8852-6257	E-mail	taeng2a@naver.com	

세원하드페이싱

Sewon Hardfacing INC.

Address	43, Wanjusandan 1-ro, Bongdong-eup, Wanju-gun, Jeonbuk-do, Republic of Korea				
Homepage	http://www.sewon-hf.com/				
Contact	문흥수(Heungsoo Moon)	Positon			
TEL	+82-63-211-0828	Fax	+82-63-211-0829		
Mobile	+82-10-6652-6641	E-mail	ceramic@sewon-hf.com		

우주용사공업주식회사

Cosmos Metallizing Co., Ltd.

Address	24-7, Yongsan 6-gil, Chirwon-eup, Haman-gun, Gyeongsangnam-do, Republic of Korea			
Homepage	http://www.woojucoat.com			
Contact	김균택(KyunTak Kim)	Positon		
TEL	+82-55-587-1448	Fax		
Mobile		E-mail	woojurnd@woojucoat.com	

㈜이에스티

Electro Static Technology, Inc.

Address	103-14, Gajangsaneopseobuk-ro, Osan-si, Gyeonggi-do			
Homepage	https://www.estek.co.kr/			
Contact	임종우(JongWoo Lim) Positon			
TEL	+82-31-831-5623 Fax +82-31-831-5771			
Mobile	+82-10-2079-6890	E-mail	jwlim@estek.co.kr	

(주)지엔브이

GNV

Address	96 Yongdeok-ro 302beon-gil, Hallim-myeon, Gimhae-si, Gyeongsangnam-do			
Homepage	http://gnv10.co.kr/			
Contact	정희석(HeeSeok Jeong)	Positon		
TEL	+82-55-346-7671	Fax	+82-55-346-7672	
Mobile	+82-10-5439-1926	E-mail	gnv10@daum.net	

Session I

Session Chair: Kee-Ahn Lee (Inha Univ.), Hua Li (NIMTE-CAS)

November 17th (Monday) Room A 09:30		Room A 09:30~11:45
09:45-10:25	C,	cture Control towards the Advanced
	Applications of Thermal Spray Ce	ramic Coating Based on the Critical
	Bonding Temperature Concept	
	Chang-Jiu Li (Xi'an Jiaotong University)
10:25-11:05	Plenary From Basics on Cold S	praying to Solutions for Additive
	Manufacturing and Repair	
	Frank Gaertner (Helmut Schmidt Unive	rsity)
11:05-11:45	Plenary Advanced Thermal and	Kinetic Spray Technologies for
	Addressing Societal Challenges	
	Kentaro Shinoda (AIST)	

Plenary Lecture

Title	Prof.	First Name	Chang-Jiu	Last Name	Li	
Affiliation			Xi'an Jiaotong University			
			The strategy of microstre	ucture control to	owards the advanced	
Presentation	n Title		applications of thermal s	pray ceramic co	ating based on the	
			critical bonding tempera	ture concept		
			1 , 3		d for variety of industrial	
			• •		al spray ceramic coatings	
			'		amellar interface bonding,	
					sical performances of the	
			,	. ,	mits the development of	
				·	sent, the intrinsic critical	
			9 1		amic droplet to form a	
				•	ented, which is defined as	
			the glass transition temperature of ceramic coating material.			
			Accordingly, a critical deposition temperature for splat to form a			
			bonding at the interface in terms of the critical bonding temperature			
			is proposed. When the deposition temperature exceeds the critical bonding temperature a thermal spray ceramic coating with			
Abstract					achieved, otherwise the	
			,	,		
			coatings of conventional lamellar structure are deposited instead. It will be shown that based on the concept of the critical bonding			
					erent microstructures from	
				9	erent pore geometries can	
			·		quirements for advanced	
			applications such as for	wear-resistant	coatings, highly durable	
			thermal barrier coating	gs, energy sto	rage device and high	
			performance SOFC manuf	acturing. It will be	e also shown that with the	
			ceramic materials of a m	elting point lowe	er than about 1500°C the	
			coatings of fully dense microstructure can be deposited at ambient			
			temperature which allows	the possibility to	extend ceramic coatings	
			to further wider functiona	l applications in	different fields.	

Plenary Lecture

Title	Dr.	First Name	Frank	Last Name	Gaertner
Affiliation		Helmut Schmidt Universi	ity - University	of the Federal Armed	
		Forces Hamburg			
			From Basics on Cold	Spraying to	Solutions for Additive
Presentat	ion little		Manufacturing and Repa	nir	
Abstract			and additive manufacturing with solid impacts, cold spand unique properties, now when impact conditions of particles is enabled by high heating, which in consequents.	g and arising obside solutions to ended a solutions to ended a solutions to ended a solutions to ended a solutions to exceed critical very ghistrain rate defuence by thermal instabilities at paraments, properties between individualined impact termical and thermal callar to those of reing applications in soft structural parameter sets are tackled by well parameter sets a emperature by diest treatments. Opto 3D geometries and environment tracturing. By all-internal parameter to the solution of the solution	tacles to demands in able applications in repair spray technique dealing coatings of high purity other spray methods. Idecities, bonding of solid formation and associated softening then leads to rticle interfaces. As shown of the deposit improve all particle impact velocity operature. By well-tuned conductivities as well as espective bulk material on serial production. The by cold spray additive ther developments. Cold did and still contain non-intributing to rather one of the powder of

Plenary Lecture

Title	Dr.	First Name	Kentaro	Last Name	Shinoda
Affiliation	Affiliation		National Institute of Advanced Industrial Science and		
Aimation	Annation		Technology (AIST)		
Presentat	tion Title		Advanced Thermal and K	Cinetic Spray Tecl	nnologies for Addressing
Treserita	don mac		Societal Challenges		
			Coating technologies—pa	rticularly thermal	spray and solid-state
			kinetic spray deposition—	-are gaining grea	ter importance as global
			challenges become more	complex in an in	creasingly uncertain and
			volatile world. Even as the	e COVID-19 pand	emic has subsided, Japan
			now faces emerging issue	s including energ	y and environmental
			constraints, limited natura	ıl resources, a rap	idly aging and shrinking
			population, and the need	for resilient infra	structure. In parallel,
			competition in advanced	manufacturing—s	such as semiconductor
			equipment and battery te	chnologies—is in	tensifying as nations
			reinforce economic security. In this context, coating technologies		
			are positioned to play a pivotal role in enabling robust, efficient,		
			and sustainable industrial systems.		
			This keynote will highlight three examples illustrating how thermal		
			and kinetic spray technologies can contribute to these societal		
Abstract			demands.		
			First, ammonia-fueled gas	turbine technolo	pay will be discussed. As
			hydrogen and ammonia a		3,
			carriers, ammonia combus		
			challenges—most notably		
			under reducing conditions	s. Understanding	degradation mechanisms
			and exploring protective of	coating strategies	are essential to realizing
			practical ammonia energy	systems.	
		Second, recent progress in	n solid-state kine	tic spray deposition—for	
			low-temperature repair ar	nd remanufacturir	ng—will be presented.
			Processes such as aerosol	deposition and o	cold spray offer pathways
		to resource-efficient, circu	ılar manufacturing	g by enabling structural	
			restoration without high t	hermal loads.	

Finally, advances in next-generation hybrid aerosol deposition (HAD) will be introduced. By integrating localized energy input, including laser-assisted super-temperature fields, HAD opens new opportunities for tailored microstructures and novel processing windows beyond conventional plasma-assisted approaches.

Together, these developments underscore how coating science and technology can help build a more sustainable, resilient, and low-carbon society.

Session II | Cold Spray / Kinetic Spray I

Session Chair: Frank Gaertner (Helmut Schmidt University), Guang-Rong Li (Xi'an Jiaotong University)

November 17th (Monday) Room A 13:00~15:10 Keynote Dynamics of Impact-Induced Bonding: Insights from Single-13:00-13:30 Particle Impact Experiments and Site-Specific Micromechanical Analysis Yuji Ichikawa (Tohoku University) 13:30-13:50 Invited Cold Spray Metallization of Thermoplastic CFRP for Enhanced Lightning Strike Resistance Hiroki Saito (Tohoku University) 13:50-14:10 Invited High Quality Cold Spray Cu Metallization of Ceramics with Widened Deposition Window Enabled via Ti or Cu-Ti Buffer Layer Xiao-Tao Luo (Xi'an Jiaotong University) 14.10-14.30 Adhesion and Lightning Strike Resistance of Cold-Sprayed Aluminum Repair Coatings on CFRTP Wataru Kai (Tohoku University) Dynamic Flattening and Microstructural Changes in Aluminum 14:30-14:50 Particles under High Strain Rates Gil-Ju Na (Tohoku University) 14:50-15:10 Improved Al6061 Deposit Performance by In-situ Induction Heating during Cold Gas Spraying

Luca Klingler (Helmut Schmidt University)

Keynote Lecture

Title	Dr.	First Name	Yuji	Last Name	Ichikawa
Affiliation		Tohoku University			
Duccontat	Presentation Title		Dynamics of Impact-Induced Bonding: Insights from Single-		
Presentat	don Title		Particle Impact Experiments	s and Site Specific	Micromechanical Analysis
			The deposition mechanis	m in cold spray	(CS) relies on high-veloc
			ity impact, where intense	plastic deforma	tion fractures and remov
			es the native oxide film,		
			subsequently bond. How	ever, the extent	of plastic and shear def
			ormation is highly non-u	niform, producin	g regions near the interf
					ess the challenges associ
				3.	s presentation introduces
			•	•	ling the exploration of b
			onding conditions through single-particle impact experiments and		
			the nano- to micro-scale mechanical evaluation of adhesion stre		
			ngth.		
			In situ microparticle impact experiments, combined with site-spec		
			ific micromechanical testing, reveal the detailed micromechanics of the bonding process. Our findings demonstrate a pronounced		
Abstract					·
Abstract			gradient of bond strength across the interface, with the maximu m occurring near the periphery. This gradient is linked to localiz		
			ed surface opening durir	. ,	
					ns further show that stro
			nger bonding correlates		
			de structure from continu	uous layers into	fragmented debris.
			Metallurgical bonding is	thus found to re	equire both sufficient sur
			face exposure through la	teral expansion	and high local contact p
			ressures to achieve atom	ic proximity. We	present a predictive fra
		mework in which bond s	trength is propo	ortional to the effective	
			pressure and degree of s	surface exposure	, validated by finite elem
			ent simulations demonstr	rating that increa	asing impact velocity enh
		ances bond strength. This research provides critical insights for o			
			ptimizing cold spray prod	cesses.	

Invited Lecture

Title	Dr.	First Name	Hiroki	Last Name	Saito
Affiliation	n		Tohoku University		
Dunanta			Cold Spray Metallization of Thermoplastic CFRP for Enhanced		
Presentation Title			Lightning Strike Resistar	nce	
			Carbon fiber reinforced	polymer (CFRP) I	has been increasingly
			adopted in modern aircra	ft and wind turbi	ne blades due to its high
			specific strength and low	weight. However,	the inherently high
			electrical resistivity of the	polymer matrix r	nakes CFRP highly
			susceptible to lightning st	rike damage. Sur	face metallization has
			been recognized as an eff	fective approach	to enhance the lightning
			strike protection (LSP) per	formance of CFR	P, and several coating
			techniques—such as phys		•
			deposition, thermal spray		•
			explored, yet none have provided a robust and industrially viable		
			solution. Recently, the cold spray process has emerged as a		
			promising solid-state technique for CFRP metallization, offering		
			advantages such as rapid coating formation, low thermal load on		
			substrates, and the potential for in-situ repair.		
			This presentation highlights recent progress in developing LSP coatings on thermoplastic CFRP (CFRTP) substrates using low-		
Abstract			pressure cold spray. Through a combined experimental and		
			numerical approach, parti	9	•
			temperature have been identified as key parameters governing		
			continuous coating forma		
			Lightning strike tests were	e conducted on s	pecimens with varying
			coating thicknesses and d	leposition pattern	s, and high-speed
			imaging was employed to	visualize the tra	nsient damage process
			during discharge. Post-str	ike evaluations re	vealed multiple damage
			modes in CFRTP, including	g polymer ablatio	n, carbon fiber fracture,
			internal cracking, and inte	rlaminar delamin	ation. It was found that
			coatings fabricated by the	e cold spray proce	ess effectively mitigated
			these damage modes, de		
			improve the overall lightning strike resistance of CFRTP. Based on		
			these findings, we propos		
			realizing a lightweight, lig	3	, ,
			metallization system for n	ext-generation C	FRP structures.

High quality Cu metallization of ceramics via cold spray enabled by Ti or Cu-Ti buffer layer

XiaoTao Luo*, Menghan Chen, Chang-Jiu Li

State Key Laboratory for Mechanical Behavior of Materials, School of Materials Science and Engineering, Xi'an Jiaotong University, Xi'an, Shaanxi 710049, P. R. China

* Corresponding author's Email: luoxiaotao@mail.xjtu.edu.cn

Abstract: Cold spray has garnered significant attention for ceramic metallization due to its high material deposition rate and no hazard emission feature. Although many efforts, such as optimizing the spraying parameters and introducing Al softer buffer layer, have been made, it is still challenging to deposit continuous and dense Cu coating on ceramic substrates with uniform thickness. To address this issue, in this study, Ti powder and mechanically mixed Cu-Ti powder are cold sprayed on Al2O3 substrate as buffer layers for Cu coating. Effect of the buffer layer type on deposition behavior, thermal shock resistance and spraying parameter window of the cold sprayed Cu coating is examined. Results show that Ti particles can be much easier to be deposited on Al2O3 substrate than Cu and Al particles. The porous microstructure endows the Ti buffer layers with low stiffness which could be plastically deformed rather than spall-off from the substrate during Cu particle deposition leading to uniform coating thickness without Cu particle impact erosion induced inter-track grooves. Although both the conventional Al buffer layer, and the Ti and Cu-Ti buffer layers proposed in this work help to get continuous Cu coating with homogenous thickness, the thermal shock lifetimes of coatings with Ti and Cu-Ti buffer layers reach 1.5 times and twice those of Al-buffer-layered Cu coating due to their superior adhesion and moderate thermal expansion coefficients between Cu coating and the Al2O3 substrate. Furthermore, by using Cu-Ti composite buffer layer, the deposition window for Cu coatings is greatly broadened by which Cu coating with higher deposition efficiency and lower porosity to 0.4% is achieved. These findings provide critical insights into the design and optimization of cold spray processes for ceramic metallization, offering significant implications for industrial applications.

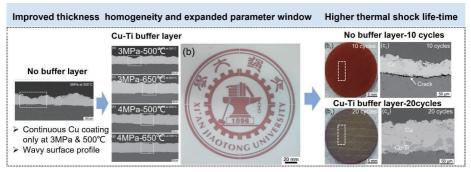


Fig. 1. A comparison of the deposition behavior and thermal shock resistance of cold sprayed Cu coatings on Al_2O_3 with and without the buffer layer

Acknowledgment: This work is supported by National Key R&D program of China (2024YFB4609600) and National Natural Science Foundation of China (52375379).

Keywords: Ceramic metallization, Cold spray, Ti-Cu Buffer layer, Thickness uniformity, Thermal shock resistance

- 1. G. Huang, L. Ma, L. Xing, X. Li, Mater. Sci. 27 (2021) 407-415.
- 2. R. Drehmann, T. Grund, T. Lampke, B. Wielage, K. Manygoats, T. Schucknecht, D. Rafaja, J. Therm. Spray Technol. 23 (2014) 68–75.
- 3. R. Drehmann, T. Grund, T. Lampke, B. Wielage, K. Manygoats, T. Schucknecht, D. Rafaja, J. Therm. Spray Technol. (2014).
- 4. T. Schmidt, F. Gärtner, H. Assadi, H. Kreye, Acta Mater. 54 (2006) 729-742.

Adhesion and Lightning Strike Resistance of Cold-Sprayed Aluminum Repair Coatings on CFRTP

¹Wataru Kai, ¹Hiroki Saito, ¹Yuji Ichikawa, ¹Kazuhiro Ogawa*

¹ Fracture and Reliability Research Institute, Graduate School of Engineering, Tohoku University, Sendai, JAPAN

Polymer-based composite aircraft are electrically insulating and thus vulnerable to thermal damage from Joule heating during lightning strikes. Conventional conductive treatments involve complex manufacturing and repair processes, often leading to extended aircraft downtime. Cold spray (CS), a solid-state coating method, has emerged as a promising solution for rapid deposition and on-site application. Previous studies showed copper CS coatings on thermoplastics CFRP (CFRTP) are effective for lightning strike protection, but repair after lightning damage remains unreported. Effective repair requires full electrical restoration, since incomplete repair increases damage extent and reduces residual strength [2]. This study investigates CS-applied aluminum coatings on CFRTP substrates, followed by lightning strike testing. After damage, repair coatings were deposited by CS. Coating quality was assessed by thickness and resistivity measurements, while lightning resistance was evaluated through melted area analysis and ultrasonic flaw detection for both initial and repaired specimens.

The deposition conditions for each specimen are summarized in Table 1. To induce greater damage after the first lightning strike, specimen A was fabricated with a thinner coating. After the first lightning strike, this specimen was subjected to repair deposition. For comparison, specimen B was prepared under the same deposition conditions as the repaired specimen, to evaluate the coating quality and lightning resistance of the coating formed by the initial deposition.

Table 1. Spray conditions of each lightning strike test specimen

Specimen	Gas pressure [MPa]	Gas temperature [°C]	Nozzle traverse speed [mm/s]
A-As-sprayed	0.5	375	60
A–Repaired	0.5	375	30
B-As-sprayed	0.5	375	30

Fig. 1 shows (a) the surface appearance of specimen A after the lightning strike, (b) its surface appearance after repair, (c) the surface appearance after the subsequent lightning strike on the repaired specimen A, and (d) the surface appearance of specimen B after the lightning strike.

^{*} Corresponding author's Email: hiroki.saito.d6@dc.tohoku.ac.jp

Table 2 compares the coating thickness and electrical resistivity between the A-Repaired specimen and the B-As-sprayed specimen. These results show that the coating quality is comparable to that of the initial CS deposition. Table 3 presents the melting area measured with a digital microscope and coating delamination area ratio obtained from ultrasonic testing. The results indicate that even when significant coating delamination occurred during the first strike, repair deposition by CS restored the lightning resistance to a level comparable to the initial deposition.

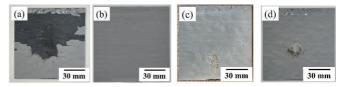


Fig. 1. Surface appearance of each specimen: (a) A-As-sprayed after lightning strike, (b) A-Repaired, (c) A-Repaired after lightning, (d) B-As-sprayed after lightning

Table 2. Comparison of coating quality between the first coating and the repaired coating

	A-Repaired	B-As-sprayed
Coating thickness [µm]	266	219
Electrical resistivity $[\mu\Omega{\cdot}m]$	3.66	3.86

Table 3. Comparison of lightning resistance between the initial deposited specimen and the repaired specimen

-	A-Repaired	B-As-sprayed
Melting area [mm ²]	374	298
Delamination area ratio [%]	4.86	13.69

Acknowledgment: This work was supported by JKA and its promotion funds from KEIRIN RACE.

Keywords: Cold Spray, CFRTP, Aluminum, Adhesion, Lightning Strike Protection, Repair Coating

- 1. H. Saito et al., Journal of Thermal Spray Technology, Vol. 34, p. 231-249 (2025).
- 2. H. Kawakami et al., Composite: Part A, Vol. 42, p.1247-1262 (2011).

Dynamic Flattening and Microstructural Changes in Aluminum Particles under High Strain Rates

¹Gil-Ju Na, ^{2,3}Mostafa Hassani, ¹Kazuhiro Ogawa, ¹Hiroki Saito, ¹Yuji Ichikawa*

¹Fracture and Reliability Research Institute, Tohoku University, Sendai, 980-8579, Japan
²Sibley School of Mechanical and Aerospace Engineering, Cornell University, Ithaca, NY 14853, USA
³Department of Materials Science and Engineering, Cornell University, Ithaca, NY 14853, USA

* Corresponding author's email: ichikawa@tohoku.ac.jp

Cold spray (CS) is one of the thermal spray techniques that allows deposition of metallic, polymer, and ceramic powders in a solid state. This aspect gives cold spray the potential to be widely employed across industries, as it can be performed at relatively low temperatures. Therefore, it is important to establish a good understanding of adhesion mechanisms in cold spray. As most studies agree that particle deformation behavior is a key factor in the adhesion mechanism of cold spray, there have been studies employing single-particle impact tests to observe microstructure evolution and analyze the mechanism of the dynamic recrystallization after high-speed deformation^[1]. Nevertheless, mechanical properties such as plastic flow stress of the particles during the high-rate deformation, which is one of the decisive factors in cold spray processing, remain unexplored.

In this study, we employed nanoindentation, which has significantly advanced in recent years, allowing step-load impact tests, in other words, a high-strain-rate tests. We have compressed pure aluminum particles against a sapphire substrate using a flat-punch tip of the nanoindentation to interrogate their mechanical properties under different strain rates. Subsequently, we compared the data from the nanoindentation with the results obtained by finite element analysis (FEA) to investigate the differences in actual deformation and simulations using the isotropic constitutive equation. The experimental quasi-static results and FEA showed a good match except for the high initial stress during the experiment which is likely caused by the oxide layer. Meanwhile, load fluctuations observed during the step-load impact test were not present in the corresponding FEA as shown in Fig. 1 (c). This indicates that the fluctuations of the flow load are caused by either microstructural evolution or load measurement technique of the nanoindentation during the step-load impact test.

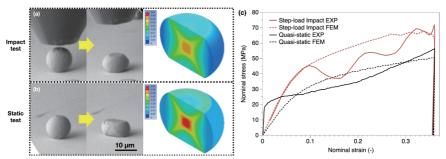


Fig. 1. SEM image of in-situ particle compression test and FEA result of (a) step-load impact test and (b) quasi-static test and (c) the nominal strain-stress curve of experimental result and FEA result.

Additionally, we used a focused ion beam (FIB) to fabricate cross-sectional lamellae perpendicular to the slip lines of the compressed particles for TEM observation as shown in Fig. 2 (a) and (d). The observation revealed the formation of subgrains near the corner of the compressed particle, particularly near the terminations of the slip lines formed as shown in Fig. 2 (b). Furthermore, Fig. 2 (c) and (f) shows that coffee bean-like contrast features were observed inside the diamond-shaped grain of the center for both step-load impact test and quasistatic test.—These coffee-bean-like contrasts are indicative of dense dislocation structures^[3], possibly associated with dislocation interactions such as the formation of small loops or cells. Nevertheless, we have not yet found significant differences between the microstructures of post-impact test and static test particles.

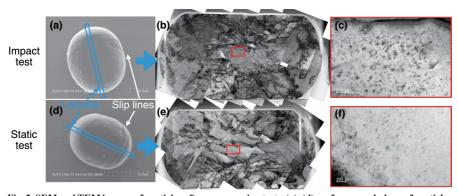


Fig. 2. SEM and TEM images of particles after compression tests. (a), (d) surface morphology of particles, (b), (e) TEM images of the cross-section, and (c), (f) TEM images of the center of particles under higher magnification after impact test and static test respectively.

Acknowledgment: The authors gratefully acknowledge the funding received from JSPS KAKENHI (Grant Number 23H01721), and National Science Foundation CAREER Award (CMMI-2145326)

Keywords: Cold spray, particle compression test, flow stress, microstructure development.

- Q. Tang, Y. Ichikawa, and M. Hassani, "Microparticle impact-induced bond strength in metals peaks with velocity," *Proc. Natl. Acad. Sci.*, vol. 122, no. 14, p. e2424355122, Apr. 2025.
- [2] H. Assadi and F. Gärtner, "Particle compression test: a key step towards tailoring of feedstock powder for cold spraying," *Coatings*, vol. 10, no. 5, p. 458, 2020.
- [3] L. S. Robertson and K. S. Jones, "Silicon: Defect Evolution," in *Encyclopedia of Materials: Science and Technology*, K. H. J. Buschow, R. W. Cahn, M. C. Flemings, B. Ilschner, E. J. Kramer, S. Mahajan, and P. Veyssière, Eds., Oxford: Elsevier, 2001, pp. 8533–8543.

Improved Al6061 deposit performance by in-situ induction heating during Cold Gas Spraying

Luca Klingler*, Jim Merlin Manoo Klutta, Alexander List, Frank Gärtner, Thomas Klassen

Helmut Schmidt University – University of the Federal Armed Forces, Hamburg, Germany *Corresponding authors's Email: luca.klingler@hsu-hh.de

Abstract: Systematic studies investigating influences of cold spray parameters on coating properties mainly concern the so-called primary parameters, such as process gas pressure and temperature [1,2], to shape particle impact conditions [3]. However, previous studies of the authors revealed that secondary parameters governing the surface temperature can also be used for quality optimization of cold spray deposits [4]. In order to obtain a better understanding of surface deformation under particle impact, this study investigates the influence of the substrate temperature on interface phenomena and deposit build-up. To achieve this goal, the substrate temperatures were kept constant during spraying by using an insitu induction heater. The experiments were carried out using a commercially available cold spray system of type 5/11 by Impact Innovation (Rattenkirchen, Germany), with Al6061 as both feedstock powder and substrate material. Details regarding the various spray parameters and the applied values are specified in Tab. 1.

Tab. 1. Spray parameters and applied values

Parameter	Values/Range
powder size	26 – 49 μm
T _{gas}	500 °C
p_{gas}	5 MPa
nozzle	OUT 1
layers	40
carrier gas flow	$4 \text{ m}^3/\text{h}$
stand-off distance	40 mm
spray velocity	500 mm/s
line spacing	2 mm
feed rate	16.04 g/min
injection distance	30 mm
substrate pre-heating temperatures	100 °C, 150 °C, 200 °C, 250 °C, 300 °C

Results showed that increasing the substrate temperature leads to more possible deformation of the substrate and the already built-up deposit, resulting in higher thickness/ deposition efficiency, reduced porosity, and increased electrical conductivity. Fig. 1 shows the deposit thickness and porosity as functions of the substrate temperature set by the in-situ induction heating.

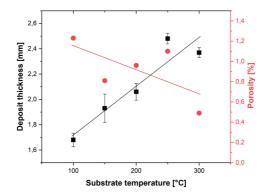


Fig. 1. Deposit thickness and porosity as functions of the substrate temperature

As illustrated in Fig. 1, the deposit thickness increases with rising substrate temperatures. A slight reduction in porosity is also observed with increasing surface temperatures, although this trend is less pronounced. When the substrate temperature is increased from 150 °C to 250 °C, the porosity even slightly rises. This effect could be attributed to the adhesion of particles that would otherwise remain unbonded - a similar trend reported by Rech et al. [5]. Overall, the porosity of the produced coatings remains very low, at around 1 %, with the lowest value obtained at the highest substrate temperature of 300 °C. Within this context, the study reveals the potential of a targeted thermal control during cold spraying to tailor coating properties and thus contributes to a better understanding of thermal effects in cold spraying. Gained results support the development of optimization strategies for 3D additive manufacturing as well as repair applications by combining appropriate sets of primary and secondary cold spray parameters.

Acknowledgment: The authors acknowledge the financial support within the frame work of the project "CORE – Computer-based Refurbishment" by dtec.bw – Digitalization and Technology Research Center of the Bundeswehr. Dtec.bw is funded by the European Union – NextGenerationEU. The authors also like to thank Marion Kollmeier, Matthias Schulze, Bastian Oswald and Matthias Hartmann for technical support.

Keywords: Cold Spray, Al6061, Substrate Temperature, Deposit Performance

- 1. H. Koivuluoto, et al., Cold-Sprayed Al6061 Coatings: Online Spray Monitoring and Influence of Process Parameters on Coating Properties, *Coatings*, 10(4), p. 1-16 (2020).
- 2. C. Huang, et al., Tailoring powder strengths for enhanced quality of cold sprayed Al6061 deposits, *Materials & Design*, 215, p. 1-18 (2022).
- 3. H. Assadi, et al., On Parameter Selection in Cold Spraying, *Journal of Thermal Spray Technology*, 20, p. 1161-1176 (2011).
- 4. L. Klingler, et al., May 5–8, 2025, Influence of Secondary Parameters in Cold Gas Spraying of 6061 Aluminum, *Proceedings of the ITSC 2025*, Thermal Spray 2025: Proceedings from the International Thermal Spray Conference, Vancouver, Canada, p. 302-309, ASM (2025).
- 5. S. Rech, et al., Influence of Pre-Heated Al 6061 Substrate Temperature on the Residual Stresses of Multipass Al Coatings Deposited by Cold Spray, *Journal of Thermal Spray Technology*, 20(1-2), p. 243-251 (2011).

Session III | Solution/Suspension & Hybrid Processes

Session Chair: Chang-Jiu Li (Xi'an Jiaotong University)

November 1	7th (Monday)	Room B 13:00~15:10
13:00-13:30	Keynote Solution Precursor Plasma-Spr with Tuned Bandgap for Enhanced V Activities Hua Li (NIMTE-CAS)	
13:30-13:50	Invited Synergistic Feed Rate & Mic Superior Microwave Absorption in N Sprayed BaFe ₁₂ O ₁₉ /CS/PI Coatings Xiaohua Feng (NIMTE-CAS)	•
14:10-14:30	Fabrication of Visible-Light Active Ce-Do Step Solution Precursor Plasma Sprayin Yang Rui (NIMTE-CAS)	
14:30-14:50	Invited Hybrid Aerosol Deposition fro Covalent Bonded Materials Mohammed Shahien (AIST)	m Dense Microstructure to
14:50-15:10	Formation of ZrB ₂ -based Ultra-high Ten by Aerosol Deposition Haruto Oishi (Yokohama National University)	nperature Ceramics Coatings

Keynote Lecture

Title	Professor	First Name	Hua	Last Name	Li
Affiliation	Affiliation		Ningbo Institute of Materials Technology and Engineering, Chi		
71111111111111			nese Academy of Science		
_					doped Bi2O3 coating wi
Presentat	tion Title		• .	nhanced visible	-light photocatalytic act
			ivities		toon to foliation the
			* *		ises in fabricating pho
			tocatalytic nanostructur	_	-
			al applications. Developed appropriate coating	-	-
				•	
			es yet remains challengeroduce our efforts made		
				,	, ,
			d photocatalytic coatings. In particular, solution precursor plasma sprayed (SPPS) Ce-		
			doped Bi ₂ O ₃ coatings will be addressed. Bi ₂ O ₃		
			is a promising yet limited photocatalyst due to its narrow ligh		
			t-response range and rapid charge carrier recombination.		
			Precursor solutions with varying Ce/Bi ratios were deposited		
			onto 316L stainless steel substrates using an atmospheric plas		
Abstract			ma spray system with a solution feeder. Comprehensive chara		
			cterization evidenced		·
			successful Ce incorpora	tion into Bi ₂ O ₃	attice, reducing the ba
			ndgap and extending li	ght absorption	into the visible region.
			The coating with 3% Ce	/Bi ratio exhibi	ted exceptional perfor
			mance, achieving 91.82	% methyl orang	je degradation after 6
			hours of visible light irr	adiation. This e	nhancement is attribute
			d to effective bandgap	narrowing and	oxygen vacancy regulat
		ion via Ce doping, whic	h significantly i	mproved visible light a	
			bsorption and charge c	arrier separatio	n/transport. The one-st
			ep SPPS processing roo	ute would shed	light on developing
			high-performance visib	ole-light-driven	photocatalytic coatings
			for environmental purification, biomedical and life health a		
			pplications.		

Synergistic Feed Rate & Microstructure Design Enables Superior Microwave Absorption in Mechanically Robust Flame-Sprayed BaFe₁₂O₁₉/CS/PI Coatings

¹Pengyu Li, ¹Xiaohua Feng*, ¹Hua Li*

¹Zhejiang-Japan Joint Laboratory for Antibacterial and Antifouling Technology, Zhejiang Engineering Research Center for Biomedical Materials, Zhejiang Key Laboratory of Biopharmaceutical Contact Materials, Ningbo Institute of Materials Technology and Engineering, Chinese Academy of Sciences, Ningbo 315201,

China

* Corresponding author's Email: xhfeng@nimte.ac.cn, lihua@nimte.ac.cn

Abstract: Developing efficient microwave-absorbing coatings via thermal spraying is hindered by the thermal demagnetization and oxidation of fillers. Herein, a low-temperature flame spraying strategy is employed to fabricate Nd-doped BaFe₁₂O₁₉/nano-carbon spheres (CS)/polyimide (PI) coatings. By systematically controlling the feed rate, we precisely modulate filler dispersion and coating microstructure evolution, thereby inducing significant transitions in the dominant microwave attenuation mechanisms. At high feed rates, limited CS addition promotes localized surface plasmon resonance (LSPR) and metallization effects within the surface-dense layer, while excessive CS loading induces an overconnected network and prominent skin effect, impairing microwave absorption (MA) in both cases. Conversely, under low feed rates, favorable thermodynamic and kinetic conditions enable the formation of PI-encapsulated spherical filler structures in the surface region. This unique structure effectively suppresses LSPR and the skin effect, enhances polarization losses, prevents excessive conductivity rise (mitigating impedance mismatch), and thus optimizes over MA. Consequently, the high feed rate coating delivers a minimum reflection loss (RL_{min}) of -39.1 dB and an effective absorption bandwidth (EAB) of 3.7 GHz at a thickness of 4.3 mm. In stark contrast, the low feed rate coating achieves a superior RLmin of -52.3 dB and a wider EAB of 6.1 GHz at 2.1 mm. Furthermore, the coatings demonstrate outstanding adhesion, achieving Class 0 in the cross-cut testing. Scratch testing demonstrated excellent cohesion and interfacial robustness without catastrophic delamination. This study provides critical mechanistic insight and establishes a scalable route for engineering flame-sprayed microwave absorbers with simultaneously enhanced structurefunction integration and long-lasting mechanical performance.

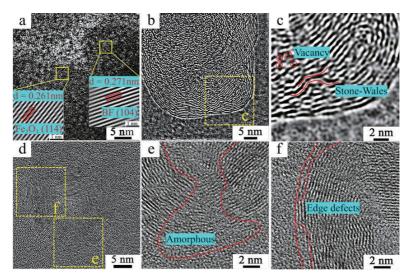


Fig. 1. HRTEM images: (a) BF and α -Fe₂O₃ region in FS-8CS-L coating, (b, c) pristine CS with (c) corresponding to magnified views of the areas in (b), (d-f) CS regions in FS-8CS-L coating with (e) and (f) corresponding to magnified views of the areas in (d).

Acknowledgment:

This work was supported by the Key Research and Development Program of Ningbo, China (Grant # 2024Z198, # 2023Z195), the open Fund of State Key Laboratory of Infrared Physics (Grant No. SITP-NLIST-YB-2024-06), the Young Science and Technology Innovation Leading Talents of Ningbo (Grant # 2024QL019), and the 14th Five-Year Civil Space Pre-Research Project (No. D020502).

Keywords: microwave absorbing coating, flame spraying, microstructure evolution, adhesion performance.

- 1. T. Xu, Z. An, R. Zhang, Compos Part A Appl Sci Manuf., 179, 108030 (2024).
- M. Zhao, H. Zhu, B. Qin, R. Zhu, J. Zhang, P. Ghosh, Z. Wang, M. Qiu, Q. Li, Nano-Micro Lett., 17, 199 (2025).
- 3. Z. An, Y. Huang, R. Zhang, Compos. Part B., 259, 110737, (2023).

Enhanced Photocatalytic Performance and Weather Resistance of TiO₂/Phosphate Composite Coatings Fabricated through Suspension Flame Spraying

Junhao Zhu, Jing Huang, Xiaomei Liu, Rui Yang, Xiaohua Feng, Botao Zhang, Yi Liu, Hua Li*

Ningbo Institute of Materials Technology and Engineering, Chinese Academy of Sciences

* Corresponding author's Email: lihua@nimte.ac.cn

Abstract: This study employed suspension flame spraying technology to fabricate an inorganic composite coating with aluminum dihydrogen phosphate as the bonding phase and titanium dioxide (TiO₂) as the photocatalyst, aiming to develop a photocatalytic coating with superior weather resistance. XRD analysis confirmed that TiO₂ in the coating maintained its anatase phase without transformation to the rutile phase. The surface microstructure of the coating was examined via SEM, while its weather resistance and stability impact on photocatalytic performance were evaluated through water immersion tests. Photocatalytic activity was characterized by the degradation rate of methylene blue dye in aqueous media. The results demonstrated that the photocatalytic efficiency of the coating significantly improved with increasing TiO₂ content, achieving methylene blue degradation rates ranging from 77.02% to 97.74%. After weathering treatment, the coating retained excellent photocatalytic efficiency, with performance markedly enhanced at higher TiO₂ concentrations, indicating its stable application potential in aqueous environments.

Keywords: Titanium dioxide, Phosphate composite coating, Photochemical catalysis, Suspension flame spraying

Hybrid Aerosol Deposition from Dense Microstructure to Covalent Bonded Materials

Mohammed Shahien and Kentaro Shinoda

National Institute of Advanced Industrial Science and Technology, AIST, Japan

Hybrid Aerosol Deposition (HAD) is an emerging non-melt ceramic coating technique that combines plasma assistance, room-temperature impact consolidation (RTIC), and advanced three-dimensional deposition capabilities. By bridging the gap between traditional plasma spraying and aerosol deposition, HAD overcomes their respective limitations and opens new opportunities for sustainable coating applications. Its versatility not only improves the performance of ceramic coatings in established fields but also enables the deposition of materials previously inaccessible by conventional methods, with potential benefits for environmental protection and advanced engineering systems. Among such challenging materials is silicon carbide (SiC), which decomposes before melting and is difficult to process using thermal spray techniques, while conventional chemical vapor deposition (CVD) suffers from slow growth rates (<1 μm/h) and thickness limitations. This study explores the potential of HAD for dense Al₂O₃ ceramic coating deposition for environmental protections as well as the potential of HAD SiC deposition, despite its strong covalent bonding structure. The results provide fundamental insights into HAD processing of SiC and lay the groundwork for future advancements in SiC coatings and nanoscale material science.

Formation of ZrB₂-based ultra-high temperature ceramics coatings by aerosol deposition

¹Haruto Oishi, ²Makoto Hasegawa*

¹Department of Mechanical Engineering, Materials Science and Ocean Engineering, Graduate School of Engineering Science, Yokohama National University, Japan

²Division of Systems Research, Faculty of Engineering, Yokohama National University, Japan

* Corresponding author's Email: hasegawa-makoto-zy@ynu.ac.jp

Abstract: ZrB₂ is a type of ultra-high temperature ceramics (UHTC), which has attracted attention as a material with a high melting point, relatively low density, and good oxidation resistance. It is also known that adding SiC to ZrB₂ can improve oxidation resistance¹. The application of joining UHTC to ceramic matrix composites (CMC) requires extremely high temperatures to produce joints, which degrade the CMC substrate. The aerosol deposition (AD) method can form dense and crystalline coatings at room temperature through particle collisions with the substrate²), indicating no degradation of the CMC substrate. The objectives of this study are to verify the formability of ZrB₂ and ZrB₂-SiC coatings by the AD method and to examine their microstructures. ZrB₂ and ZrB₂-SiC coatings were deposited on glass and Mo substrates by the AD method. ZrB₂-SiC powder, used for ZrB₂-SiC coatings, was prepared by mixing ZrB₂ powder and SiC powder. Phase identification of formed coatings was performed by using XRD. The surface and cross-section of the coatings were observed by FE-SEM and EDS. Dense and crystalline ZrB₂ and ZrB₂-SiC coatings were formed by the AD method. SiC powders were dispersed within the coating layer in the case of ZrB₂-SiC coatings.

Acknowledgment: This research was supported by a grant-in-aid for scientific research (B) (18H01745) and (C) (24K08095) from the Japan Society of the Promotion of Science. The authors greatly appreciate the grants.

Keywords: aerosol deposition, ultra-high temperature ceramics, zirconium diboride, silicon carbide, room temperature impact consolidation

- 1. R. Inoue, Y. Arai, Y. Kubota, Ceramics International, 43 (2007) 8081-8088.
- 2. J. Akedo, J. Am. Ceram. Soc., 89 [6] (2006) 1834-839.

Session IV | Cold Spray / Kinetic Spray II

Session Chair: Kentaro Shinoda (AIST), Sunghun Lee (Korea Institute of Materials Science)

November 17th (Monday)

Room B 13:00~15:10

15:20-15:40	Invited Cold Spray Technologies for Nuclear Energy Applications Hwasung Yeom (POSTECH)
15:40-16:00	Invited Development of Al6061-NiTi Composite via Cold Spray Assisted by Friction Stir Processing Chunjie Huang (Northwestern Polytechnical University)
16:00-16:20	Invited Application of Cold Sprayed Coatings in Automotive Industry Hyuk Jun Lee (Cerectron)
16:20-16:40	Microstructure and Tribological Property Correlations in Cold-Sprayed Fe-Based Amorphous Alloy Coatings Kyung Un Won (Inha University)
16:40-17:00	Influence of Laser Surface Heat Treatments on Mechanical Changes of Deformed Al6061 Bulk Material and Cold Spray Deposits Jim Merlin Manoo Klutta (Helmut Schmidt University)
17:00-17:20	Bond Coat Material for Cold Sprayed Polymer Film Formation Jingze Sun (Tohoku University)

Cold Spray Technologies for Nuclear Energy Applications

Hwasung Yeom Pohang University of Science and Technology

Kumar Sridharan University of Wisconsin, Madison

Cold Spray Additive Manufacturing (CSAM) is emerging as a key technology in the nuclear energy sector, enabling the deposition of dense metallic or metal—ceramic composite coatings at high rates with minimal heat input to substrates. This presentation will first outline CSAM fundamentals—including spray system configuration, deposition mechanisms, and resulting material properties—before highlighting three nuclear-specific applications:

- Coating deposition: Chromium coatings applied via CSAM significantly enhance corrosion and oxidation resistance in zirconium-alloy cladding used in light-water reactor fuel assemblies.
- Near-net shape manufacturing: Fabrication of free-standing oxide dispersion strengthened (ODS) steel cladding tubes for fast reactors, offering superior high-temperature strength and radiation tolerance compared to conventional ferritic/martensitic steels.
- 3. Defect repair: CSAM is the leading approach for repairing and mitigating stress corrosion cracking in spent fuel storage canisters in the USA and Republic of Korea.

These case studies demonstrate CSAM's versatility for improving performance, enabling advanced manufacturing, and extending the service life of critical nuclear components.

Development of Al6061-NiTi composite via cold spray assisted by friction stir processing

Chunjie Huang 1-2*, Ting Chen3, Alexander List2, Jan Carstensen3, Frank Gaertner2, Benjamin Klusemann3, Thomas Klassen2, Wenya

*Corresponding author: huangc@nwpu.edu.cn

¹ State Key Laboratory of Solidification Processing, Shaanxi Key Laboratory of Friction Welding Technologies, School of Materials Science and Engineering, Northwestern Polytechnical University, 710072 Xi'an, China.

² Department of Mechanical Engineering, Helmut-Schmidt-Universität/Universität der Bundeswehr, 22043 Hamburg, Germany

³ Solid-State Materials Processing, Helmholtz-Zentrum Hereon, Institute of Materials Mechanics, 21502 Geesthacht, Germany.

Abstract

building up layers or parts.

Bulk nickel titanium or nickel titanium - composite parts are employed in many mechanical applications. However, due to the reactivity and the super-elastic behavior of NiTi, possible process routes for casting, sintering, as well as shaping and machining are difficult to apply and quite costly. Thus, new techniques for additive manufacturing of respective parts are needed for paving the way to widespread applications. Using NiTi-Al6061 composites as model

Al-alloys can be processed to coatings by cold spraying. In contrast, super-elastic NiTi can in be build up with a

system, the present study suggests a new process route by combining cold spraying and friction stir processing for

rather lower deposition efficiency. Thus, due to the difference in mechanical strength and the thermal softening

behavior, bonding during cold spraying of respective blends is solely caused by the deformation of the Al-alloy

powder particles, the strength of internal interfaces between the two constituents being far below optimum. Friction

stir processing is applied to reduce the amount of microstructural defects as porosity and non-bonded internal

interfaces for Al matrix, and thus improving the mechanical performance of cold sprayed parts. The composites

manufactured by using cold spraying followed by friction stir processing have a homogenous NiTi distribution and

well bonded NiTi/Al6061 interfaces. By individual parameter optimization, the formation of undesired intermetallic

phases can be avoided. The results on microstructures and strengths of as deposited and additionally friction stir

processed composites are discussed with respect to the deposition mechanism and the microstructural evolution

during post-processing, as well as needed interface qualities to serve as high performance composite material.

Keywords: cold spray, friction stir processing, Al6061/NiTi composite, deposition mechanism, properties

67

Application of cold sprayed coatings in automotive industry

¹H. Lee*, ^{1,2} K. H .Ko, ²B. Ahn

¹Cerectron Co., Ltd., Republic of Korea

² Department of Energy Systems Research, Ajou University, Suwon, Republic of Korea

* Corresponding author's Email: materialist@cerectron.com

The cold spray is a solid state process with mechanical bonding for the coatings. These cold sprayed coatings offer protection against wear, corrosion for improving vehicle reliability and longevity. For this reason, the cold spray coatings are widely used in the automotive industry to enhance the performance and durability of various components. This paper delves into the various applications of cold spray coatings in the automotive components.

Microstructure and Tribological Property Correlations in Cold-Sprayed Fe-Based Amorphous Alloy Coatings

¹Kyung-Un Won, ¹Yong-Hoon Cho, ²Gi-Su Ham, ²Geun-Sang Cho, ²Choongnyun Paul Kim, ¹Kee-Ahn Lee*

¹ Department of Materials Science and Engineering, Inha University, Incheon 22212, Republic of Korea

² KOLON Advanced Research Cluster, KOLON industries, Seoul 07793, Republic of Korea

* Corresponding author's Email: keeahn@inha.ac.kr

Abstract: Amorphous alloys possess a densely packed atomic structure based on short-range order. The absence of grain boundaries and dislocations mitigates local stress concentration, thereby suppressing crack initiation and propagation [1]. Furthermore, their high elastic limit and hardness lead to shallow and uniform surface deformation during contact, resulting in lower coefficients of friction (COF) and wear rate than crystalline alloys. This behavior is also advantageous for the rapid formation and maintenance of a continuous and stable protective tribofilm during sliding processes [2]. Cold spray (CS) is a solid-state, supersonic deposition process with particle bonding driven by severe plastic deformation and adiabatic shear under minimal thermal exposure [3]. As a result, melt-related oxidation and phase transformations are avoided. Consequently, CS is well suited for fabricating amorphous coatings. The low process temperature and limited thermal exposure preserve the amorphous fraction and suppress crystallization and oxidation during deposition [4]. Recent studies report that these benefits are maintained because cold spray proceeds as a solid-state deposition without melting.

In this study, amorphous coatings were fabricated under three conditions (CS1, CS2, and CS3) by varying the gas temperature of the cold spray process. XRD and DSC analyses confirmed that the amorphous phase was retained on a coating scale for all three conditions. Cross-sectional and surface observations (Fig. 1) revealed the coexistence of strongly bonded regions with weakly bonded areas, micropores, and microcracks, with limited oxygen signals observed near the particle boundaries. Pin-on-disk tests (counterbody: Al₂O₃ pin) yielded wear rates (Fig 2. (b)) of 1.27×10⁻⁵, 2.02×10⁻⁵, and 2.07×10⁻⁵ mm³/mN for CS1, CS2, and CS3, respectively. These values demonstrate 2-4 times superior wear resistance compared with the same material deposited by HVOF in a previous study. The COF (Fig 2. (c)) stabilized most rapidly for CS1, while CS2 and CS3 were accompanied by initial fluctuations and a gradual increase. Analysis of the worn surfaces and cross-sections commonly showed abrasive grooves and oxide films. Delamination craters and crack propagation originating at interparticle boundaries were more frequent in CS2 and CS3. The tribological performance was found to be more significantly governed by the continuity and integrity of interparticle bonding than by hardness alone. For CS1, the small interfacial gaps and the continuous network of strong bonds resulted in shallow and uniform contact deformation This enabled early formation and stable retention of a protective tribofilm and led to the lowest wear rate (1.27×10⁻⁵ mm³/mN) with a stable COF. In contrast, the interconnected network of weak bonds, pores, and cracks in CS2 and CS3 induced a cycle of local stress concentration, delamination, and subsequent tribofilm reformation, resulting in increased wear rates of 2.02×10⁻⁵ and 2.07×10⁻⁵ mm³/mN. In summary, it was confirmed that preserving the amorphous fraction while ensuring the continuity of strong interparticle bonding are the key design factors determining the stability of the tribofilm and the suppression of wear.

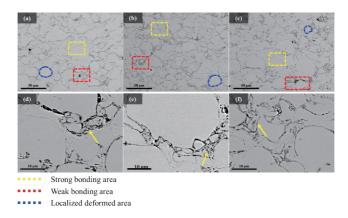


Fig. 1. Cross-sectional microstructure observation photographs of cold spray coating layers.

(a, d) CS1, (b, e) CS2, (c, e) CS3

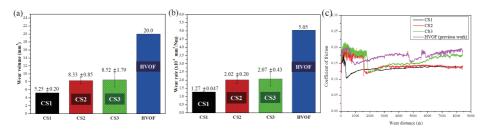


Fig. 2. Wear behavior of cold sprayed amorphous coating layers

(a) wear volume, (b) wear rate (c) coefficient of friction

Keywords: Cold spray, Amorphous alloy, Microstructure, Wear properties, Tribology

- 1. Cao, F., Huang, Y., He, C., Fan, H., Wei, L., Ning, Z., & Sun, J. (2021). Wear behaviors of a Ti-based bulk metallic glass at elevated temperatures. Frontiers in Materials, 8, 695840.
- 2. Murphy, A. G., Norman, A., Meagher, P., & Browne, D. J. (2022). Wear of bulk metallic glass alloys for space mechanism applications. Journal of Tribology, 144(9), 091706.
- 3. Assadi, H., Kreye, H., Gärtner, F., & Klassen, T. J. A. M. (2016). Cold spraying—A materials perspective. Acta Materialia, 116, 382-407.
- 4. Wang, Q., Han, P., Yin, S., Niu, W. J., Zhai, L., Li, X., ... & Han, Y. Current research status on cold sprayed amorphous alloy coatings: a review. Coatings. 2021; 11 (2): 206.

Influence of Laser surface heat treatments on microstructural changes of deformed Al6061 bulk material and cold spray deposits

¹Jim Merlin Manoo Klutta*, ¹Matthias Schulze, ²Jens Gibmeier, ¹Alexander List, ¹Frank Gärtner, ¹Thomas Klassen

¹Helmut Schmidt University, Hamburg, Germany ²Karlsruhe Institute of Technology, Karlsruhe, Germany *Corresponding authors's Email: kluttaj@hsu-hh.de

Abstract: Heat treatment of high-performance aerospace parts of Al 6061 alloys in T6 temper condition is a delicate matter, as it already undergoes specific and standardized treatments. Cold Spraying could offer possible solutions for part repair, but so far only reaches the needed properties regarding strength, ductility and adhesion, if rare and costly helium is used as process gas. In order to reach the thresholds for repair application by using resource friendly nitrogen as process gas, Laser Assisted Cold Spray could offer needed solutions by improving deposit properties without changing part properties.

This study systematically investigates influences under altered Laser settings, traverse velocities and substrate dimensions and correlates that to changes in strength, ductility and hardness. The mechanical properties were investigated by tensile tests, hardness tests. The correlations aim to find appropriate combination of maximum improvement of deposit properties and minimum alteration of substrate properties. While laser settings were successfully determined, additionally, the results show distinct settings for optimizing deposit ductility or the substrate/deposit interaction. In summary, this study allows to derive parameter selections of needed surface morphology, laser settings and traverse velocities as guideline for part repair by laser assisted cold spray.

Acknowledgment: dtec.bw, NextGenerationEU

Keywords: Laser, Assisted, Post, Processing, Cold, Spray, Repair, AA6061

Bond Coat Material for Cold Sprayed Polymer Film Formation

¹Jingze Sun, ¹Hiroki Saito, ¹Yuji Ichikawa, ¹Kazuhiro Ogawa*

¹Fracture of Reliability Research Institute, Graduate School of Engineering,

Tohoku University, Japan

* Corresponding on the size Engile Isomehim, accuse h7@tahalas as in

* Corresponding author's Email: kazuhiro.ogawa.b7@tohoku.ac.jp

Abstract: Cold spray deposition of fluoropolymer coatings such as perfluoroalkoxy alkane (PFA) remains highly challenging due to inherently low deposition efficiency and poor adhesion on metallic substrates. Most PFA particles rebound upon impact, resulting in thin, weakly bonded coatings (typically <20% polymer deposition per pass) that greatly restrict practical applications. Conventional approaches—such as surface pretreatments by grit blasting or laser texturing and the use of particle additives—can enhance polymer deposition [1], but they increase process complexity and equipment requirements. In this work, we discovered that introducing a cold-sprayed metallic bond coat provides a simpler yet more effective alternative: compared to laser-treated substrates, the bond coat method not only simplifies the process but also achieves even higher deposition efficiency and more stable film formation. For instance, a titanium (Ti) bond coat on the substrate markedly improved PFA deposition efficiency and enabled the formation of a continuous, well-adhered PFA layer.

To systematically identify the factors governing PFA film formation, a comparative study was performed using various metallic bond coats including titanium (Ti), zinc (Zn), copper (Cu), and aluminum (Al), along with lasertextured (LT) substrates. As illustrated in Figure 1, when the bond coats exhibited similar surface roughness values, the resulting PFA deposition efficiencies were similar across different metals, indicating that chemical composition plays a minor role in adhesion. Instead, surface morphology was found to be the dominant factor. When the bond coats were fabricated using fine particle feedstocks or mechanically polished to achieve smoother finishes, a dramatic decrease in deposition efficiency was observed, often preventing continuous film formation. Interestingly, while the LT surfaces achieved surface roughness comparable to that of cold-sprayed coatings, their PFA deposition performance was notably lower. The variations in surface roughness among the LT samples shown in Figure 1 were caused by differences in laser output power and scan interval. However, altering these parameters did not significantly affect the deposition efficiency, suggesting that roughness alone is insufficient to improve PFA adhesion on LT surfaces. This difference can be explained by examining the microstructural and thermal characteristics of the bond coats. As shown in Figure 2, cold-sprayed coatings possess a porous microstructure that reduces effective thermal conductivity. Figures 2(a) and 2(b) correspond respectively to the LT sample with the second-highest roughness and to the Ti bond coat sample in Figure 1. This thermal insulation effect promotes local interfacial temperature rise during particle impact, leading to enhanced polymer softening and improved interlocking. In contrast, LT surfaces, despite being rough, lack this thermal advantage due to their dense, bulk-like structure. These findings suggest that the bond coat's effectiveness arises not only from its surface topography but also from its capacity to create favorable thermal conditions for PFA adhesion.

In summary, the cold-sprayed metallic bond coat offers a simpler and more effective route for fluoropolymer

film formation than laser texturing. This method enhances deposition efficiency and coating integrity by combining a rough, porous surface with reduced thermal conductivity, which facilitates polymer softening and anchoring. The findings establish bond-coat engineering as a practical strategy for achieving continuous, well-adhered PFA coatings, providing a new framework for extending cold spray technology to fluoropolymer applications.

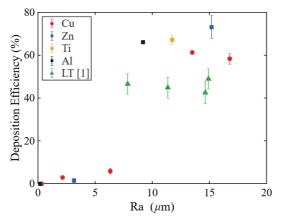


Fig. 1. Effect of Bond Coat Roughness on PFA Deposition Efficiency

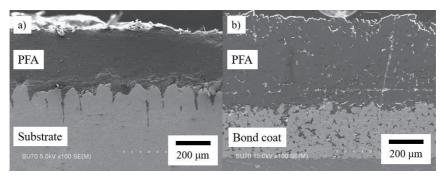


Fig. 2. Cross-sectional SEM images of (a) laser-treated substrate [2] and (b) Ti bond coat with PFA deposited

Keywords: Cold spray, Fluoropolymer coatings, Bond coat, Surface roughness

References

- W. L. Sulen, C. Bernard, S. Onodera, J. Ishizaki, N. Mary, Y. Ichikawa, and K. Ogawa, Surf. Coat. Technol., 478(2024), 130489.
- 2. W. A. Lock Sulen, Ph.D. dissertation, Department of Mechanical Systems and Design, Tohoku University, Japan, 2020.

Session V | Process Diagnostics and Modeling

Session Chair: Mohammed Shahien (AIST), Yang Rui (NIMTE-CAS)

Room B 15:20~17:40 November 17th (Monday) Invited Real-time High-Velocity Visualization of Ceramic Particle 15:20-15:40 Impact on Metal Substrate in Cold Spray Shuo Yin (Trinity College Dublin) 15:40-16:00 Invited Evaluation of Mechanical Properties of APS Y₂O₃ Coatings via Micropillar Compression Test Sung-Gyu Kang (Gyeongsang National University) CFD Study and Performance Evaluation of a New Cascaded Plasma 16:00-16:20 Spray Torch Byeongryun Jeon (Korea Institute of Materials Science) Study of Nozzle Influence on Aerosol Deposition (AD) by using 3D 16:20-16:40 CFD Simulations Julio Gutierrez De Frutos (Helmut Schmidt University) 16:40-17:00 Numerical and Experimental Study of In-flight MgAl₂O₄ Particles in Atmospheric Plasma Spraying under Arc Current Variation Byeong-il Min (Korea Institute of Materials Science) 17:00-17:20 Automated Porosity Evaluation of Thermal Barrier Coatings via CNN-**Based Semantic Segmentation** Byeongryun Jeon (Korea Institute of Materials Science) 3D CFD Simulation of Substrate Angle Influence on Bow Shock 17:20-17:40 Effects in Cold Spray (CS) Julio Gutierrez De Frutos (Helmut Schmidt University)

Abstract (ATSC 2025)

Metal matrix composites (MMCs) are an important branch of materials capable of being manufactured using cold spray. These coatings comprise of metal powders mixed with a low weight percentage of ceramic powders which act as a reinforcement for the metallic coating, which in turn improve its mechanical properties [2-4]. Previous research has shown a higher retention of smaller, fragmented ceramic particles in the coating lead to better material properties, but an inhomogeneous material distribution at the substrate-coating interface [5]. Numerical studies have also been proposed to better understand the ceramic-substrate interaction, but these studies have been restricted to spherical powder morphologies which are less common in MMCs [1]. In this work, Laser Ablation, Particle Acceleration and Observation (LAPAO) is utilized to study the fragmentation and embedment velocities of ceramic particles as they impact metallic substrates to better understand how the coating-substrate interface can be improved. Through varying particle morphology, velocity and substrate surface roughness a better understanding of the primary mechanism behind ceramic particle embedment is gained, concluding that spherical ceramic particles fragmentation and embedment are independent of velocity, but primarily dependent on irregularities formed during the powder fabrication process. Additionally, angular ceramic particles fragment and embed at much lower velocities making them much more suitable for MMCs being made with the intention of increasing material hardness.

- [1] Zhongyu Wang, Pengcheng Mao, Chunjie Huang, Pengfei Yu, Wenya Li, Shuo Yin, Deposition mechanism of ceramic reinforced metal matrix composites via cold spraying, Additive Manufacturing, Volume 85, 2024, 104167, ISSN 2214-8604, https://doi.org/10.1016/j.addma.2024.104167.
- [2] S. Kumar, Sai Kiran Reddy, S.V. Joshi, Microstructure and performance of cold sprayed Al-SiC composite coatings with high fraction of particulates, Surface and Coatings Technology, Volume 318, 2017, Pages 62-71, ISSN 0257-8972, https://doi.org/10.1016/j.surfcoat.2016.11.047.
- [3] Guriqbal Munday, James Hogan, André McDonald, On the microstructure-dependency of mechanical properties and failure of low-pressure cold-sprayed tungsten carbide-nickel metal matrix composite coatings, Surface and Coatings Technology, Volume 396, 2020, 125947, ISSN 0257-8972, https://doi.org/10.1016/j.surfcoat.2020.125947.
- [4] Koivuluoto, Heli & Vuoristo, Petri. (2010). Effect of Powder Type and Composition on Structure and Mechanical Properties of Cu + Al 2 O 3 Coatings Prepared by using Low-Pressure Cold Spray Process. Journal of Thermal Spray Technology J THERM SPRAY TECHNOL. 19. 1081-1092. 10.1007/s11666-010-9491-2.
- [5] Zahra Shabani Chafjiri, Amir Abdollah-zadeh, Rajab-Ali Seraj, Amir Azarniya, Effect of cold spray processing parameters on the microstructure, wear, and corrosion behavior of Cu and Cu–Al2O3 coatings deposited on AZ31 alloy substrate, Results in Engineering, Volume 20, 2023, 101594, ISSN 2590-1230, https://doi.org/10.1016/j.rineng.2023.101594.

Evaluation of Mechanical Properties of APS Y₂O₃ Coatings via Micropillar Compression Test

¹ Sung-Gyu Kang*, ² Yeon Woo Yoo*, ² Yong-Jin Kang, ² Youngjin Park, ² Sunghun Lee

¹Department of Materials Engineering and Convergence Technology, Gyeongsang National University, Republic of Korea

²Extreme Materials Research Institute, Korea Intstitute of Materials Science, Republic of Korea

* Corresponding author's Email: s.kang@gnu.ac.kr, yooyw08@kims.re.kr

Abstract: Yttrium oxide (Y_2O_3) is widely used as a plasma etching-resistant material in semiconductor manufacturing industry due to its excellent resistance to halogen-based plasma etching processes. As the aspect ratio of semiconductor devices increases and higher etching power is required, the mechanical properties of Y_2O_3 coatings become critical in determining their durability and effectiveness. Evaluating the mechanical properties of thermal spray coatings has traditionally relied on methods such as Vickers hardness and nanoindentation test. However, these methods offer limited insight into the effect of internal defects in coatings on mechanical performance. In this study, micropillar compression test was applied to assess the mechanical properties of thermal spray coatings, considering the influence of coating microstructures and defects. Micropillar compression tests were conducted on Y_2O_3 coatings under various spraying parameters. The microstructure of Y_2O_3 coatings were observed by scanning electron microscopy (SEM) and the correlation between the microstructure and mechanical properties were investigated.

Acknowledgment:

Keywords: Micropillar compression test; Mechanical properties; Atmospheric plasma spraying; Yttrium oxide; Microstructure

References

CFD Study and Performance Evaluation of a New Cascaded Plasma Spray Torch

^{1, 2}Byeongryun Jeon, ¹Byeong-il Min, ¹Do Hyun Kim, ¹Youngjin Park, ¹Yong-jin Kang, ¹Hunkwan Park*

¹Extreme Materials Research Institute, Korea Institute of Materials Science, Korea

²School of Mechanical Engineering, Pusan National University, Korea

* Corresponding author's Email: hkpark@kims.re.kr

Abstract: In plasma spraying, an electrically generated, ultra-high-temperature ($\approx 10^4$ K) ionized gas jet melts and accelerates fine powder particles toward a substrate. The arc-driven jet provides high thermal capacity and independently tunable enthalpy and momentum via discharge current and plasma-gas composition, enabling melting of refractory ceramics while tightly controlling heat input. It is widely used in aerospace, power generation, and manufacturing to deposit thermal barrier coatings and wear- and corrosion-resistant overlays on critical parts [1]. Conventional atmospheric plasma spray (APS) torches typically demand high-rating power supplies (≈ 80 kW). To lower electrical demand while maintaining jet stability for coating processes, we designed a cascaded-anode plasma spray torch for stable, low-power operation (≈ 30 kW).

Performance was evaluated via computational fluid dynamics under the LTE assumption, implemented in OpenFOAM [2]. The multi-physics framework solves the coupled electromagnetic, flow, and energy equations with Joule heating and radiative losses. Temperature- and pressure-dependent thermodynamic and transport properties are employed for an Ar-N₂ plasma-forming gas mixture [3].

Performance is assessed by analyzing (i) arc behavior (e.g., voltage characteristics and arc column shape), (ii) the internal flow field within the torch body (pressure, temperature, velocity, etc.), and (iii) the outlet jet (temperature and velocity profiles). Parametric scans over discharge current, total flow rate, and Ar-N₂ mixing ratio are conducted to map stability limits and identify operating windows that meet low-power targets. In future work, downstream particle injection will be incorporated to verify that the predicted exit enthalpy and momentum are sufficient for effective spraying.

Keywords: Numerical Simulation, OpenFoam, LTE Assumption, Plasma Spraying Torch, Cascaded Plasma Torch.

References

- P. L. Fauchais, J. V. Heberlein and M. I. Boulos, Thermal Spray Fundamentals: From Powder to Part, Springer, (2014).
- 2. H. G. Weller, G. Tabor, H. Jasak and C. Fureby, Comput. Phys., 12, 620–631 (1998).
- 3. A. B. Murphy and C. J. Arundell, Plasma Chem. Plasma Process., 14, 451–490 (1994).

Study of nozzle influence on aerosol deposition (AD) by using 3D CFD simulations

Julio Gutierrez, Andreas Elsenberg, Luca Bachnick, Frank Gärtner, Thomas Klassen

Helmut Schmidt University - University of the Federal Armed Forces

Abstract:

In aerosol deposition, fine ceramic powders in sizes of less than typically 5 µm are deposited as a coating at room temperature. Aerosol deposition must be performed under a vacuum to apply such fine powders and avoid bow shock effects. According to experimental results, coating formation by aerosol deposition only occurs if particle velocities exceed a material-specific threshold velocity. Thus, knowledge of attained particle velocities over acceleration in the nozzle and under the expansion into a vacuum is essential for deriving conditions for successful deposition. In the present study, 3D CFD simulations were used to investigate the key geometric variables in particle acceleration. Three different nozzle geometries were investigated: a converging nozzle, a converging-diverging nozzle, and a converging nozzle followed by a constant cross-section toward the exit. In addition, these three nozzle geometries were optimized to maximize the particle impact velocity. The results show that the converging-diverging nozzle supplies the highest particle velocities within this comparison. By the design optimization, the particle velocities can be improved for all the geometry types. The most promising geometry from the CFD optimization was manufactured and compared to the original one, providing a gain in particle velocity of 26%.

Note

I am submitting a second abstract for ATSC2025; however, I would like the abstract titled "3D CFD simulation of substrate angle influence on bow shock effects in cold spray (CS)" to be given priority for consideration, if only one presentation may be accepted. In that event, if feasible, I would be pleased to present the second topic as a poster.

Numerical and Experimental Study of In-flight MgAl₂O₄ Particles in Atmospheric Plasma Spraying under Arc Current Variation

¹Byeong-Il Min, ¹Byeongryun Jeon, ¹Hansol Kwon, ¹Yeonwoo Yoo, ¹Do Hyun Kim, ¹Youngjin Park, ¹Yong-Jin Kang and ¹Hunkwan Park*

¹Extreme Materials Research Institute, Korea Institute of Material Science, Republic of Korea

* Corresponding author's Email: hkpark@kims.re.kr

Abstract: Atmospheric plasma spraying (APS) forms coatings by injecting particles into a thermally expanded plasma jet (on the order of 10⁴ K and up to several km·s⁻¹) and impinging the molten particles onto a substrate [1]. Plasma-jet temperature and velocity are governed primarily by gas composition (transport coefficients and thermodynamic properties), arc-current, and torch geometry [2]. In-flight particle temperature, velocity, and trajectory depend on the plasma-jet temperature and velocity as well as on particle thermophysical properties (e.g., heat capacity and density). Direct measurement of plasma-jet–particle interactions under such extreme conditions is limited, so APS optimization has largely relied on ex-situ coating characterization, which becomes time- and cost-intensive when new powders or operating conditions are introduced. Therefore, we develop a numerical method to quantify the effect of arc-current variation on in-flight MgAl₂O₄ particles, and we compare the numerical results with measurements of particle temperature and velocity [3]. The validated numerical method provides quantitative guidance, reduces trial and error, and offers a practical route to accelerate APS process optimization for MgAl₂O₄ and other ceramic powders.

Acknowledgment: This work was supported by the Korea Evaluation Institute of Industrial Technology (KEIT) grant funded by the Ministry of Trade, Industry and Energy (MOTIE, Republic of Korea) under Project No. RS-2024-00422158, "Development of high heat-resistant and corrosion-resistant ceramic coating materials, processes, and reliability evaluation technologies for hydrogen-fueled gas turbines." The authors also acknowledge the support of the Korea Institute of Materials Science (KIMS) through the Fundamental Research Program (No. PNKA430).

Keywords: Numerical Analysis, Thermal Plasma, Atmospheric Plasma Spraying (APS), In-Flight Particle, MgAl₂O₄, Magnesium Aluminate Spinel (MAS)

References

- P.L. Fauchais, J.V.R. Heberlein and M.I. Boulos, Thermal Spray Fundamentals: From Powder to Part, Springer, New York, p. 362 (2021)
- M.I. Boulos, P.L. Fauchais and E. Pfender, Handbook of Thermal Plasmas, Springer, Cham, p. 258 (2023).
- 3. H. Park, H. Kwon, Y.-j. Kang, Y.W. Yoo, D.H. Kim, Y. Park, S. Lee and C. Kim, "Effect of gas mixtures on arc plasma and in-flight MgAl₂O₄ particle behavior in plasma spraying", *25th International Symposium on Plasma Chemistry*, 1-P-305.

Automated Porosity Evaluation of Thermal Barrier Coatings via CNN-Based Semantic Segmentation

^{1, 2}Byeongryun Jeon, ¹Byeong-il Min, ¹Hansol Kwon, ¹Yeon Woo Yoo, ¹Sunghun Lee, ¹Hunkwan Park*

¹Extreme Materials Research Institute, Korea Institute of Materials Science, Korea

²School of Mechanical Engineering, Pusan National University, Korea

* Corresponding author's Email: hkpark@kims.re.kr

Abstract: Thermal spraying propels molten feedstock onto component surfaces, enabling deposition of thermal barrier coatings (TBCs) and wear- or corrosion-resistant overlays on mission-critical hardware in aerospace, power, and manufacturing [1]. In particular, TBCs defend components at high temperatures by reducing effective thermal conductivity via pores distributed within the coating. However, porosity evaluation remains predominantly manual, time-consuming, and prone to operator subjectivity and inconsistent criteria.

This study conducts automated analysis of TBC microstructure images using CNN-based semantic segmentation to precisely delineate the topcoat and pores and to derive consistent porosity measurements. We constructed training and validation datasets by pixel-wise annotating micrographs into five classes: substrate, bond coat, topcoat, mounting resin, and pores. The encoder underwent staged transfer learning, first pretrained on the general-domain ImageNet corpus and subsequently on the microscopy-focused MicroNet [2], followed by fine-tuning on our task-specific dataset. To handle ultra-high-resolution images within GPU memory constraints, we employed overlapping tiling with weighted stitching to preserve full-field predictions. Robustness to domain shift (e.g., magnification, illumination, and specimen-preparation differences) was improved via data augmentation—brightness/contrast perturbations, noise and blur, rotations, and contrast normalization. Porosity was then computed in a region-of-interest-restricted manner by aggregating pore pixels only within the segmented topcoat mask, thereby excluding mounting resin and other non-relevant regions.

Although this study was trained and evaluated on a single sample, we plan to expand to a dataset comprising multiple samples that span diverse material chemistries, spray processes, and sample preparation/imaging conditions to enhance generalization and external validity. We further aim to establish a generalized, standardized workflow for automated porosity assessment that can be applied consistently across processes and facilities.

Keywords: Semantic Segmentation, Thermal Spraying, Porosity, Image Analysis

References

- P. L. Fauchais, J. V. Heberlein and M. I. Boulos, Thermal Spray Fundamentals: From Powder to Part, Springer, (2014).
- 2. J. Stuckner, B. Harder and T. M. Smith, npj Comput. Mater., 8, 200 (2022).

3D CFD simulation of substrate angle influence on bow shock effects in cold spray

Julio Gutierrez*, Alexander List, Frank Gärtner, Thomas Klassen

Helmut Schmidt University - University of the Federal Armed Forces, Hamburg, Germany

* Corresponding author's Email: gutierrez@hsu-hh.de

Extended abstract

In cold spray, a high-velocity gas jet is used to transport and accelerate particles towards a substrate [1]. When the gas jet meets the substrate, it is drastically decelerated and deflected. The gas deceleration is associated with an increase in gas pressure, density, and temperature. The corresponding volume of this phenomena is known as the bow shock [2]. As a result of the low gas velocity and the high density, the sprayed particles inside the gas jet are decelerated in this region too, which is detrimental to the deposition efficiency and the coating quality [3]. Thus, reducing the bow shock effect while maintaining the particle velocities is beneficial for improved cold spray process performance.

It is well known that the adhesion of the deposited material highly depends on the particle velocities upon impact. More precisely, particle impact velocities need to be above the material depended critical velocities to achieve a 50% deposition efficiency [4]. However, the component of the particle impact velocity vector referred to here, is the one in the direction normal to the substrate [5], which is defined as the effective velocity. Thus, the effective velocity is always less than or equal to the particle impact velocity. In this study, 3D CFD simulations were performed to identify optimal spray angles at which the reduction of bow shock effects compensates for the decrease in effective particle impact velocities.

For the simulations, the process gas was set to nitrogen, with a pressure of 5 MPa and a temperature of 500 °C. Nitrogen was also used as carrier gas, at a temperature of 20 °C in combination with a mass flow rate corresponding to 5% of that of the process gas. The outlet was set to 0.1 MPa and 20 °C. The simulated powder was Al6061 with a homogeneous particle diameter of 47 μ m. For the simulations, the substrate surface orientation was rotated between 0° and 30° about the Y and Z axes, as shown in Fig. 1, with 0° representing the angle at which the substrate's normal vector is parallel to the nozzle centerline.

Fig. 1 illustrates the variation in powder impact velocity and the volume of the bow shock under different spray angles. Both subfigures in Fig. 1 show similarities: the particle impact velocity and bow shock volume present maximum values at minimum axis rotations. Moreover, both show local minima at the maximum simulated angles. This results suggest that the reduction of the bow shock volume does not compensate for the decrease in effective particle velocity. In addition, the powder impact velocity exhibits a dependence on the substrate's rotation axis, a behavior not observed in the bow shock. This difference arises because impact velocity is a powder-related property, while the bow shock volume is a gas-related property. As a result, the gas shows axis-related symmetry, whereas the powder does not. The asymmetry occurs because the powder enters the system radially, as shown in Fig. 2. Finally, a local maximum in powder impact velocity is observed at a substrate rotation of approximately 4° about the Z-axis (Fig. 1a), indicating an optimum spray angle for the investigated conditions.

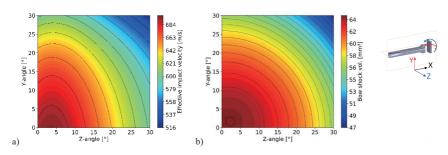


Fig. 1. Particle impact velocity (a) and bow shock volume (b) when rotating the substrate.

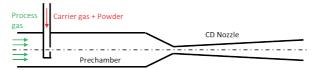


Fig. 2. Schematics of the powder injection geometry upstream of the prechamber.

Acknowledgment: This research in the frame of the project "CORE – Computerized Refurbishment" and the used computational resources (HPC cluster HSUper) are both funded by dtec.bw – Digitalization and Technology Research Center of the Bundeswehr, which we gratefully acknowledge. dtec.bw is funded by the European Union – NextGenerationEU.

Keywords: Cold Spray, Modeling, 3D CFD, Particle velocity.

1. REFERENCES

- 1. T. Stoltenhoff, et al., " J Therm Spray Tech", 11(4), p 542–550, (2002).
- 2. V.K. Champagne, et al., "Practical Cold Spray, Springer International Publishing, (2021).
- 3. H. Assadi, et al., " J Therm Spray Tech", 20(6), p 1161–1176, (2011).
- 4. L. Wiehler, et al., " J Therm Spray Tech", 34(2-3), p 587–596, (2025).
- 5. K. Binder, et al., " J Therm Spray Tech", 20(1-2), p 234–242, (2011).

Session VI

Session Chair: Kazuhiro Ogawa (Tohoku University), Shrikant Joshi (University West)

November 18th (Tuesday)

Room A 09:00-12:10

09:30-10:10	Plenary Liquid Feedstock Thermal Spraying: Unlocking the Next Frontier? Shrikant Joshi (University West)
10:10-10:50	Plenary TBC and EBC Technologies for Aviation Gas Turbine Engine Yeon-Gil Jung (Changwon National University)
11:10-11:40	Keynote A Bimodal-Structured Coating with Columnar/Lamellar Trans-Scale Features for Strain-Tolerant and Thermal Insulative Performances Guang-Rong Li (Xi'an Jiaotong University)
11:40-12:10	Keynote Effect of Cooling Rate after Fusing on the Microstructural Evolution of a Ni-based Self-fluxing Alloy Tatsuya Tokunaga (Kyushu Institute of Technology)

Plenary Lecture

Title	Prof.	First Name	Shrikant	Last Name	Joshi
Affiliation	on		University West		
Duccount	B		Liquid feedstock the	rmal spraying	: Unlocking the Next
Present	auon mue		Frontier?		
Presentation Title Abstract		While thermal spraying has for protective and function feedstocks has imposed in refinement and compositing spraying, mainly encompated and solution precursor plus boundaries by respectivel nano-sized powders into These approaches bypass while offering unpreceder chemistry. Recent advance appear well-placed to accompate the subject of	nal coatings, the nherent limits on sonal flexibility. Licassing suspension asma spraying (Sity) enabling either a plasma jet or the challenges in feet the control over estimated control over the sity positioning licay. Moreover, hybrided, composite, and robustness of pock routes. This the can bring togeth vation to unlock the examples from a promise of suspensional control of the control of t	reliance on powder microstructural quid feedstock thermal plasma spraying (SPS) PPS), is redefining these delivery of submicron or heir synthesis in flight. Eding ultrafine powders coating architecture and apable plasma torches the above approaches throughputs, and quid feedstock spraying rid powder-liquid and functionally graded owders with the alk will highlight how er chemistry, plasma the next frontier in our group will be lensions and solution	

Plenary Lecture

Title	Prof./Dr.	First Name	Yeon-Gil	Last Name	Jung
Affiliation	า		Changwon National Univ	ersity	
Presentation Title			TBC and EBC Technologic	es for Gas Turbi	ne
			Currently, Ceramic Matrix Compo	sites (CMCs) are emp	loyed in hot-section components
			of gas turbines including turbine	shroud and vane, bla	ade, blisk, nozzle flap/seal where
			they provide enhanced durabi	lity at elevated ten	nperatures. Their application is
			expected to expand in both cor	mmercial and military	engines, highlighting the need
			for a better understanding of date	mage mechanisms, fa	ilure modes, and predictive tools
			to ensure safe and reliable opera	ation.	
			Nevertheless, prolonged exposu	ire to harsh environn	nents such as high-temperature
			steam, molten salts, and oxid	ative atmospheres of	can lead to surface oxidation,
			volatilization, and internal de	egradation in CMC	is. To mitigate these issues,
			Environmental Barrier Coatings	(EBCs) are essential.	In particular, rare-earth silicate-
Abstract			based EBCs offer chemical stab	ility and thermal exp	pansion compatibility with CMC
			substrates.		
			Recent researches have focused	on Thermal-Environr	mental Barrier Coatings (T-EBCs),
			which integrate the thermal insu	lation of conventional	Thermal Barrier Coatings (TBCs)
			with environmental protection.	These multifunctional	coatings improve both thermal
			and structural stability, enablin	g long-term perforn	nance of CMCs under extreme
			conditions.		
			In today's presentation, the key	properties of TBCs	and EBCs including T-EBCs are
			reviewed, and the strategic dire	ctions for the design	of reliable coating systems for
			ultra-high-temperature structura	l applications are disc	cussed and proposed.

Keynote Lecture

Title	Associate Professor	First Name	Guang-Rong	Last Name	Li
Affiliation			Xi'an Jiaotong Universit	у	
Presenta	tion Title		Structure designs for de	urable thermal	barrier coatings in multi
Presenta	uon mue		-scales		
			Long life span is a basic	support for the	rmal insulation function
			of thermal barrier coating	gs (TBCs). Howe	ver, it is difficult to simul
			taneously achieve these	two performance	es in conventional lamell
			ar or columnar TBCs, wh	ich often have t	o sacrifice one performa
			nce due to limit of the	mono-featured s	tructure. In this work, a
			bimodal-structured coating with columnar/lamellar trans-scale feat		
			ures was designed to meet multiple requirements. The micro-lam		
			ellar structure was deposited to effectively prevent heat flux, and		
					d to tolerate strain. Firstl
					modal-structured coating
			' '		insulation, thermal cond
Abstract			uctivity of the bimodal-s		'
			,,		of durability, thermal cyc
			·		pating can be extended s
			ignificantly compared to	,,	·
			tly, the macro-columnar		•
			ring the distance betwee	3 3	
			ting thickness, <i>h</i> , and a		·
			,	3	etry of such coatings. Ov
			erall, the bimodal-structu	9	•
			hermal insulation and th	, ,	•
			nts a fundamental step t		оринент от астуансеств
			Cs for future applications	S.	

Invited Lecture

Title	Professor	First Name	Tatsuya	Last Name	Tokunaga
Affiliatio	n		Kyushu Institute of Tech	nology	
Drosontation Title		Effect of cooling rate after fusing on the microstructural evolution			
Presenta	Presentation Title		of a Ni-based self-fluxing	g alloy	
			The effect of cooling rate	after fusing treat	ment on microstructural
			evolution and hardness of	f a nickel-based s	self-fluxing alloy has been
			investigated to obtain fun	damental knowle	edge for optimizing of
			fusing condition. The simi	ulated thermal sp	raying and fusing
			specimens with cooling ra	ites ranging from	10 to 300 °C/min were
			prepared using differentia	I thermal analysis	s (DTA) apparatus.
			Microstructure observatio	ns were performe	ed using optical
			microscopy, electron probe microanalysis (EPMA), X-ray diffraction		
			(XRD) measurements, and electron back-scattered diffraction pattern		
			(EBSP) analysis. Phase identification revealed existence of (Ni), Ni₃B,		
			Ni ₅ Si ₂ , MB, M ₇ C ₃ and M ₆ C in all specimens. Therefore, it was found		
			that within the range of cooling conditions adopted in this study,		
Abstract			the cooling rate after fusi	ng process did n	ot affect phases formed.
7120114101			On the other hand, the cooling rate was found to influence the		
			microstructural morpholog		9 1
			the grain refinement of ((I		
			formation of ((Ni)+Ni ₃ B+N		
			the region composed of t		
			eutectic structures increas		-
			grain refining of ((Ni)+Ni₃	B) eutectic struct	ure and the increase in
			the ((Ni)+Ni ₃ B+Ni ₅ Si ₂) eut		9
			cooling transformation (C	. 3	3 .
			after fusing process of the		
	estimated from DTA cooling curves. The obtained CCT diagram and			-	
			hardness data would be useful to optimize fusing condition and		
			hardness of nickel-based	self-fluxing alloy	coating.

Session VII | TBCs & High-Temp Coatings I

Session Chair: Xiaohua Feng (NIMTE-CAS), Hwasung Yeom (POSTECH)

November 18th (Tuesday) Room B 13:0		
13:00-13:30	(Keynote) Pre-Oxidation Effects on the The	ermal-Hatigue Behavior of
	Thermal Barrier Coatings	20)
	Sunghun Lee (Korea Institute of Materials Science	<u> </u>
13:30-13:50	Invited Doosan Enerbility's Thermal Barrie	er Coating Technologies for
	Advanced Next-Generation Gas Turbines	
	Kwangyong Park (Doosan Enerbility)	
13:50-14:10	Invited High-Temp Coating Systems for Ad	ero Engines
	Keekeun Kim (Agency for Defense Development,)
14:10-14:30	Invited Effect of Hf, Si, Ta, Re Additions to	NiCoCrAlY Bond Coats on
	Oxidation Behavior up to 15,000 Hours at 1	,000°C
	Hansol Kwon (Korea Institute of Materials Science	
14:30-14:50	Composition-Dependent Tetragonality an	nd Mechanical Behavior of
	High Entropy Oxides	
	Janghyeok Pyeon (Changwon National Universit	y)

Pre-oxidation Effects into the Thermal-Fatigue Behavior of Thermal Barrier Coatings

Sunghun Lee*, Young-Jin Park, Yong-Jin Kang, Hansol Kwon, Yeon-Woo Yu, Do-Hyun Kim, Hun-Kwan Park, Eungsun Byon

Extreme Materials Research Institute, Korea Institute of Materials Science, South Korea

*Corresponding author's Email: shlee@kims.re.kr

Abstract: This keynote will synthesize the state of the art on pre-oxidation for thermal barrier coatings (TBCs) and then introduce our recent EB-PVD studies that map processing–microstructure–lifetime links. From literature, pre-forming a thin, dense α -Al₂O₃ thermally grown oxide (TGO) can suppress transient θ/γ -Al₂O₃, reduce growth-stress and rumpling, and extend cyclic life—provided temperature–time–oxygen partial pressure are judiciously tuned. Building on this, we engineered TGO pre-growth on MCrAIY bond coats prior to 7–8 wt% YSZ top coats and quantified sensitivities: TGO thickness increases systematically with temperature (950 \rightarrow 1100 °C) and pressure (0.5 \rightarrow 3 mTorr), while a short pre-oxidation hold without oxygen has negligible effect. Under a standard furnace cyclic test (1100 °C, 50 min hot/10 min cool), benchmark EB-PVD TBCs spalled at ~700 cycles, whereas optimized pre-growth (e.g., 120 min, \geq 1000 °C) yielded \geq 800–925 cycles without spallation; pressure was comparatively less influential than temperature/time. Cross-sections reveal thicker, continuous α -Al₂O₃ (and late-stage spinel) with reduced interfacial cracking; an Al₂O₃ interlayer concept further tightened the TGO and curtailed crack initiation. We will conclude with a practical process map (T-t-pO₂) and design rules that couple pre-oxidation with graded/columnar architectures to target a sub-critical TGO thickness/roughness window for aero-engine duty, and outline open problems for modeling-assisted lifetime prediction.

Keywords: Thermal barrier coating (TBC), pre-oxidation, thermally grown oxide (TGO), EB-PVD, furnace cyclic test

Invited Lecture

Title	Senior Engineer	First Name	Kwangyong	Last Name	Park
Affiliation			Doosan Enerbility		
Presentation Title					oating Technologies for
			Advanced Next-Generation	on Gas Turbine	
			•		ency gas turbines are vital for
			,	-	ing a stable power supply.
			, ,		on by applying its proprietary
			•		next-generation, low-carbon
					an's comprehensive roadmap
			, ,	-	fortified by breakthroughs in
			advanced materials, specifica	,	J
					multifaceted. For hydrogen,
			the company aims to complete a 400MW full-hydrogen turbine by 2027, a timeline positioned to outpace major global competitors by approximately		
			· ·		
			three years. Additionally, a 90MW medium-sized full-hydrogen turbine,		
			developed in partnership with Korea Western Power, is slated for completion in 2028. For existing infrastructure, Doosan is pioneering ammonia co-firing		
			technology. The company has already successfully achieved a 30% co-firing		
			rate with superior NOx emission control, demonstrating a pragmatic, short-		
Abstract			term path to decarbonization		3 1 3 .
			Central to these advanceme	ents is Doosan's ex	pertise in high-temperature
			component technologies, inc	luding TBCs. These	ceramic coatings are applied
			to gas turbine parts to prote	ect them from extre	eme temperatures exceeding
			1,500°C. This protection red	duces thermal stre	ess, prevents oxidation, and
			improves overall turbine effic	ciency and durabilit	y. Doosan's R&D has yielded
			a TBC system with a rema	rkably low therma	al conductivity, a significant
			improvement over the co	nventional therm	al conductivity of existing
					-scale porous microstructure
			engineered for enhanced hig		
				, ,	roadmap, which merges a
			·		material science, positions it
			•		sition. By addressing critical
					nerships, Doosan is not only
			•		aping the next generation of
			power generation technology	у.	

Invited Lecture

Title Dr. First Name		First Name	Keekeun	Last Name	Kim
Affiliation			Agency for Defense Development		
Presentation Title		۵	Toward Technological Indepe	ndence: Develo	pment Status of High-
			Temperature Coating Systems	for Aero Engine	S
			Recent successes in the export of domes	, ,	*
			interest in the indigenous development of		, , ,
			with the achievements of the KF-21 fighte	•	
			(MUAV), expectations for local aerospace of		-
			However, the aero-engines that power the	,	, ,
			technology. To achieve genuine technolog		•
			temperature component technologies, par	*	r coating (TBC) technologies,
			which are indispensable for high-performa	ince engines.	
			Because the core TBC processes especial	lly electron-beam phys	ical vapor deposition (EB-PVD)
			and atmospheric plasma spray (APS) coati		
			development has become both critical and	•	, , , , , , , , , , , , , , , , , , , ,
			This talk introduces ongoing research to o	3	nd demonstrate domestic coating
			facilities and processes for these technological	gies. The newly develo	ped EB-PVD and APS systems
			were successfully operated, and effective of	coatings were formed o	on test specimens through process
Abstract			optimization. In-house furnace thermal tes	ts confirmed that the	coatings achieved durability
			performance meeting internal qualification	standards.	
			Based on these results, prototype engine	e components have be	en coated using the developed
			equipment, and engine-level testing is sch	eduled to verify perfor	mance under actual operating
			conditions.		
			This research marks Korea's first successfu	I localization of EB-PVI	O coating equipment under strict
			international technology restrictions and d		ical feasibility and readiness of
			domestic high-temperature coating produ		
			Moving forward, to realize mass production	3	
			indigenous engines, close collaboration ar	,	
			together with continued investment in cor	e materials technology	y, will be essential.
			Acknowledgements: This research was	financially supported	by the Institute of Civil Military
			Technology Cooperation funded by the D	efense Acquisition Pro	gram Administration and Ministry
			of Trade, Industry and Energy of Trade of	Korean government ur	nder grant No. UM24308RD3

Effect of Hf, Si, Ta, Re additions to NiCoCrAlY bond coats on oxidation behavior up to 15,000 hours at 1,000°C

¹Hansol Kwon, ¹Yong-Jin Kang, ¹Yeon Woo Yoo, ¹Do Hyun Kim, ¹Eungsun Byon*

¹Extreme Materials Research Institute, Korea Institute of Materials Science(KIMS), Republic of Korea *Corresponding author's Email: esbyon@kims.re.kr

Abstract: Thermal barrier coatings (TBCs) are widely applied to protect high-temperature components in gas turbines from thermal and oxidative degradation. Among these, NiCoCrAlY bond coats are used to improve long-term oxidation resistance by forming a stable thermally grown oxide (TGO) layer. In this study, the long-term oxidation behavior of commercial NiCoCrAlY bond coat alloys containing Hf, Si, Ta, and Re was investigated after exposure for up to 15,000 h at 1,000 °C. The TGO thickness was measured at selected time intervals, and the oxidation kinetics were quantified by calculating the parabolic rate constant (Kp) from the growth data. The results revealed that the basic NiCoCrAlY composition exhibited the lowest Kp value, indicating the slowest oxidation rate. The addition of Hf and Si led to the highest Kp value, signifying accelerated oxidation. In contrast, when all four elements (Hf, Si, Ta, and Re) were incorporated, the Kp value decreased compared to the Hf–Sicontaining alloy. These findings suggest that while Hf and Si promote faster oxide growth, the presence of Ta and Re mitigates this effect by retarding the interdiffusion of bond coat constituents, thereby suppressing oxidation. This study presents direct experimental results from long-term (15,000 h) oxidation testing, accompanied by detailed microstructural observations. Notably, it reports for the first time a comprehensive microstructural analysis of NiCoCrAlY bond coats containing Hf, Si, Ta, and Re, providing valuable insights for the design of next-generation TBC systems with improved durability under prolonged high-temperature service.

Acknowledgment: This work was supported by the Korea Evaluation Institute of Industrial Technology (KEIT) grant funded by the Ministry of Trade, Industry and Energy (MOTIE, Republic of Korea) through the project titled "Development of high heat-resistant and corrosion-resistant ceramic coating materials, processes, and reliability evaluation technologies for hydrogen-fueled gas turbines" (Project No. RS-2024-00422158).

Keywords: Thermal barrier coating (TBC); Bond coat; Isothermal oxidation; Microstructure

Session VIII | Wear/Corrosion

November 18th (Tuesday)

14:10-14:30

Session Chair: Tatsuya Tokunaga (Kyushu Institute of Technology), Chunjie Huang (Northwestern Polytechnical University)

Room A 13:00~14:50

13:00-13:30 Keynote Fe-Ce-Mo-Based Metamorphic Alloy Coatings with Excellent Wear and Corrosion Resistances Fabricated via Thermal Spray Process Kee-Ahn Lee (Inha University) 13:30-13:50 Invited Damage-Tolerant Surface Protection for Biomass Boiler Tubes via FeAl Intermetallic Layers Formed by Cold-Sprayed Al on Fe Substrate Jirasak Tharajak (Rajamangala University of Technology Phra Nakhon) 13:50-14:10 Slag Corrosion Resistance of Yb-silicate Materials for IGCC Protective Coatings

Deposits by Pulsed Laser Heat Treatment

Jihao Shen (Xi'an Jiaotong University)

Min-Soo Nam (Korea Institute of Ceramic Engineering and Technology)

Improving the Corrosion Resistance of Cold Spraying 7075 Al Repair

Fe-Ce-Mo based metamorphic alloy coatings with excellent wear and corrosion resistances fabricated via thermal spray processe

<u>1Kee-Ahn Lee</u>, <u>1Yong-Hoon Cho</u>, <u>1Kyung-Un Won</u>, <u>1Yu-Jin Hwang</u>. <u>2Gi-Su Ham</u>, <u>2Choongnyun Paul Kim</u>, <u>3Geun-Sang Cho</u>,

¹Department of Materials Science and Engineering, Inha University, Incheon 22212, Republic of Korea

²Kolon Industries, Seoul 07793, Republic of Korea ³Attometal tech Korea, Gimpo 10049, Republic of Korea

A cost-effective Fe-Cr-Mo based metamorphic alloys were newly designed and fabricated as coating material using the high-velocity oxygen fuel (HVOF) and atmospheric plasma spray (APS) thermal spray processes, and its microstructure, wear resistance, corrosion resistance were investigated in comparison with a conventional HVOF WC-12Co coating. The metamorphic coating material consisted of a splat area and un-melted powder area. The splat area contained metallic glass, (Cr,Fe)₂B, Cr₂B, and minor Fe-based BCC phases, and the unmelted powder area was composed of Fe-based BCC, (Cr,Fe)₂B, and Cr₂B phases. Room-temperature wear tests revealed that HVOF metamorphic coating material exhibited wear resistance comparable to HVOF WC-12Co coating and even superior performance at high-stress wear conditions. The corrosion resistance of APS metamorphic coating material significantly improved by addition of Mo and Nb elements. This superior wear behavior of metamorphic coating material was mainly attributed to the minimal hardness difference between the metallic glass and boride, the plasticity of the metallic glass, and the formation of a lubricating tribofilm. Based on the above results, the wear and corrosion mechanisms of Fe-Cr-B based metamorphic alloy coating layers were also discussed.

Damage-Tolerant Surface Protection for Biomass Boiler Tubes via FeAl Intermetallic Layers Formed by Cold-Sprayed Al on Fe Substrate

Jirasak Tharajak*

Division of Industrial Materials Science, Faculty of Science & Technology, Rajamangala University of Technology Phra Nakhon (RMUTP), Thailand

*Corresponding author's Email: jirasak.t@rmutp.ac.th

Abstract: Biomass boiler superheater tubes are susceptible to failure from high-temperature hot corrosion and solid-particle erosion, driven by molten alkali-salt deposits (KCl–K₂SO₄) near 700 °C. To overcome these challenges, FeAl diffusion layer was developed to mitigate this degradation. The process involves cold-spraying ~200 µm of aluminum onto steel, followed by 800 °C interdiffusion to form a continuous FeAl layer. This method is benchmarked against conventional pack aluminizing (900 °C anneal). The protection concept leverages selective Al oxidation to create a slow-growing, highly adherent Al₂O₃ scale, which resists oxygen/halide ingress and spallation. Microstructural integrity was characterized by XRD and cross-sectional SEM/EDS. Performance was evaluated at 700 °C through oxidation, hot corrosion, and solid-particle erosion tests. The cold-spray route yielded a dense, continuous FeAl layer with superior erosion resistance compared to the pack aluminizing reference. This method is practical, manufacturable, and field-repairable, providing a viable solution for extending the service life of critical boiler components.

Keywords: FeAl intermetallic, Cold spray, Aluminizing, Biomass boiler, Hot corrosion

Slag Corrosion Resistance of Yb-silicate Materials for IGCC Protective Coatings

¹Min-Soo Nam, ²Sahn Nahm, ¹Seongwon Kim*

¹Cross-Functional Ceramics R&D Group, Korea Institute of Ceramic Engineering and Technology (KICET), Korea

> ²Department of Materials Science and Engineering, Korea University, Korea * Corresponding author's Email: woods3@kicet.re.kr

Abstract: In coal-based power generation, Integrated Gasification Combined Cycle (IGCC) technology is gaining attention as a promising solution that has high efficiency and low environmental impact. However, the extreme conditions inside the gasifier, particularly the high temperatures and corrosive interactions with molten slag, pose significant challenges to the durability and performance of critical components such as burner muffles. This study investigates the corrosion behavior of Yb₂SiO₅ and its composites containing 5 wt.% and 10 wt.% Al₂O₃ under IGCC slag environments. Yb₂SiO₅ is known for its relatively high coefficient of thermal expansion (CTE) compared to other environmental barrier coating (EBC) materials. Moreover, the addition of Al₂O₃ aims to form garnet phases with higher CTE to prevent the mismatch with the substrate, thereby enhancing the overall CTE of the compositions. Bulk samples of Yb₂SiO₅ and its Al₂O₃ composites were exposed to molten slag. Subsequently, microstructural changes, phase transformations, and slag reaction layers were analyzed, and their schematic diagrams are shown in Fig. 1. Furthermore, the thermal expansion coefficients, thermal conductivity, and slag resistance of each composition were evaluated and compared. The results indicate that Yb₂SiO₅ demonstrates high thermal stability and forms a dense reaction layer that effectively prevented slag infiltration. Additionally, composites containing 5wt.% and 10wt.% Al₂O₃, showed improved thermal compatibility with the carbon steel substrate, increasing their CTE to $8.99 \times 10^{-6} \, \mathrm{K}^{-1}$ and $9.81 \times 10^{-6} \text{ K}^{-1}$, respectively. The formation of the Yb₂Si₂O₇ phase further contributed to slag consumption during the reaction, suggesting its potential as a coating material.

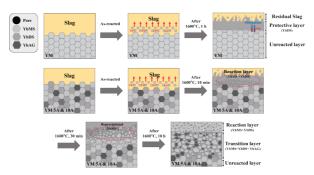


Fig. 1. Schematic diagrams of slag reaction mechanism for the different reaction times.

This template is for ATSC 2025 technical abstract. Your abstract should be submitted via our official submission system.

Acknowledgment: This study was supported by the Public Trust Research and Development Program funded by Korea Western Power Co., Ltd. under the project titled "Development of Environmental Barrier Coating Technology for Improving Anti-Erosion Properties of IGCC Gasifier Components".

Keywords: Molten slag, Yb₂SiO₅, Yb₂Si₂O₇, Yb₃Al₅O₁₂, Corrosion resistance.

Improving the Corrosion Resistance of Cold Spraying 7075 Al Repair Deposits by Pulsed Laser Heat treatment

Jihao Shen, Xinhe Huang, Xiaotao Luo*, Changjiu Li*

¹School of Materials Science and Engineering, Xi'an Jiaotong University, China * Corresponding author's Email: luoxiaotao@mail.xjtu.edu.cn

Abstract: Cold spray has been demonstrated as a highly promising technique for the in-situ repair of highstrength aluminum alloy components. However, the unique work hardened microstructure of cold-sprayed Al deposits typically leads to significantly reduced corrosion resistance. Although heat treatment can improve the corrosion resistance of the deposits, conventional bulk heat treatment inevitably degrades the mechanical properties of the substrate. In this study, AA7075 aluminum allow was selected as an example, and a novel pulsed laser heat treatment process was developed to locally modify the microstructure and enhance the corrosion resistance of cold-sprayed 7075 Al repair deposits. Under optimized conditions, this treatment effectively improved the corrosion resistance of the deposits, resulting in a uniform corrosion morphology with pit size reduced from 50–100 µm to 1–5 µm after immersion tests, while maintaining a narrow heat-affected zone (≤ 2 mm). Meanwhile, multiple microstructural and electrochemical analyses revealed the microstructural evolution (Fig. 1) and the mechanism of corrosion resistance enhancement (Fig. 2). The initial network-like structure, composed of solute segregations (Mg, Zn, Cu), amorphous phases, and minor η phase (MgZn₂), was dissolved and transformed into dispersed n precipitates after pulsed laser heat treatment. This transformation blocked the continuous penetration pathways for corrosive media, effectively confining corrosion to the surface. Additionally, pulsed laser heat treatment promoted recrystallization and reduced dislocation density, thereby suppressing galvanic corrosion between the deposit and the substrate. The results confirm that pulsed laser heat treatment is a highly effective localized post-processing method for enhancing the corrosion resistance of cold-sprayed highstrength aluminum alloy repairs.

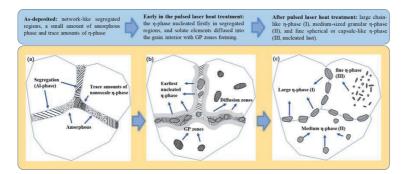


Fig. 1. A schematic diagram of repair deposit microstructure transformation mechanism during pulsed laser heat treatment; (a) the network-like solute element segregation within the repair deposit; (b) the nucleation of η phase and GP zones during pulsed laser heat treatment; (c) the dispersed granular

precipitates within the repair deposit surface after pulsed laser heat treatment, including three types of η phases.

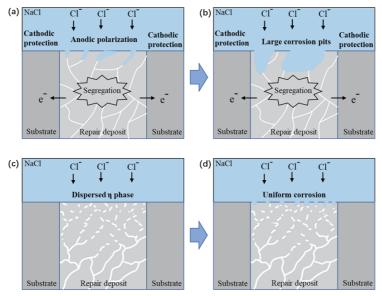


Fig. 2. A schematic diagram of the corrosion behaviour of the as-deposited and 120 T pulsed laser heat treated samples in the immersion test; (a) the anodic polarization behaviour and corrosion pits initiation on as-deposited repair deposit surface; (b) the large corrosion pits on the as-deposited repair deposit surface; (c) the dispersed η phase on the 120 T pulsed laser heat treated repair deposit surface; (d) the dispersed small corrosion pits on the 120 T pulsed laser heat treated repair deposit surface.

Acknowledgment: This work is supported by National Key R&D program of China (2024YFB4609600) and National Natural Science Foundation of China (52375379).

Keywords: Cold spray, pulsed laser, 7075 aluminum alloy, corrosion resistance, microstructural evolution.

Session IX | TBCs & High-Temp Coatings II

Session Chair: Sung-Gyu Kang (Gyeongsang National University), Shuo Yin (Trinity College Dublin)

November 18th (Tuesday)

Room A 15:10~16:10

15:10-15:30	MAX Phase as Bond Coats in Thermal Barrier Coating System Hyokyeong Kim (Soongsil University)
15:30-15:50	Phase Transformation Behavior and High-Temperature Durability of Rare Earth Oxide Co-Stabilized ZrO ₂ Tae-Jun Park (Korea University)
15:50-16:10	Research on Oxidation Behavior of Ni-Al Coatings Fabricated by Twin Wire Arc Spray Jae Woo Cho (Korea Institute of Materials Science)

MAX phase as bond coats in thermal barrier coating system

¹Hyokyeong Kim and ^{1,2}Jiwoong Kim *

Abstract: Thermal barrier coatings (TBCs) are subjected to significant thermal and residual stresses, especially at high temperatures. They typically consist of a ceramic top coat (TC), a metallic bond coat (BC), and a superalloy substrate. Conventional metallic BCs require a minimal mismatch in the coefficient of thermal expansion (CTE) between the TC and the substrate to avoid stress-related failures. To address this limitation, BCs capable of mitigating thermal stresses more effectively are needed. MAX phases, which exhibit relatively high CTEs compared to other ceramics and can form dense protective oxides such as Al₂O₃, present a promising alternative. This study designs novel MAX phase BCs to enhance thermal shock and crack resistance, employing multi-scale simulations. We model various MAX phases with Al at the A-site and C or N at the X-site. Ab initio calculations are used to investigate the temperature dependence of the Young's modulus and CTE of these MAX phases. A small CTE mismatch between the MAX phase and the thermally grown oxides (TGOs) or substrate can effectively reduce thermal stresses. Furthermore, MAX phases exhibiting the highest high-temperature flexural strength demonstrate the highest crack resistance. These results provide valuable insights into the design of MAX phase bond coats for next-generation gas turbines and engine applications.

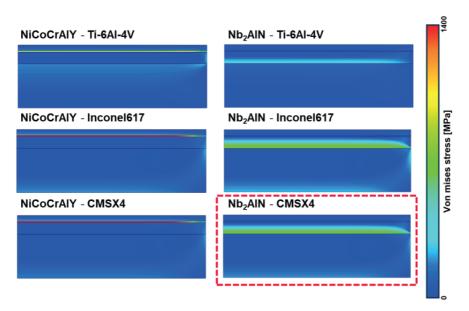


Fig. 1. Thermal stress distribution in the TBC system, comparing MAX phases with NiCoCrAlY

¹Department of Materials Science and Engineering, Soongsil University, Korea

²Department of Green Chemistry and Materials Engineering, Soongsil University, Korea

^{*} Corresponding author's Email: jwk@ssu.ac.kr

ATSC 2025

Acknowledgment: This work was supported by Korea Research Institute for defense Technology planning and advancement(KRIT) grant funded by the Korea government(DAPA(Defense Acquisition Program Administration)) (No. KRIT-CT-23-039, Development of multi-component Ultra-High Temperature Ceramic Coating Technology).

Keywords: MAX phase, Thermal barrier coating, Bond coat, Multi-scale simulation, Ab initio calculation

References

1. X. Li, W. Zhang, X. Cai, H. Liu, X. Luo, J. Mater. Res. Technol., 30, 1020 (2024).

Phase Transformation Behavior and High-Temperature Durability of Rare Earth Oxide Co-Stabilized Zirconia

1,2Tae-Jun Park, 1,2Gye-Won Lee, 1 Jong-Il Kim, 2 Sahn Nahm, 1Yoon-Suk Oh*

¹ Cross-Functional Ceramics R&D Group, Korea Institute of Ceramic Engineering and Technology, Korea
² Department of Materials Science and Engineering, Korea University, Korea

* Corresponding author's Email: <u>ysoh30@kicet.re.kr</u>

Abstract: Thermal Barrier Coatings (TBCs) are protective systems designed to shield gas turbine components from heat in high-temperature combustion environments. They use Yttria-Stabilized Zirconia (YSZ), which has low thermal conductivity and excellent mechanical properties, as the top coat material for thermal barrier coatings. However, in response to climate change and following carbon neutrality policies, a transition from traditional fossil fuel-based combustion environments to hydrogen-based combustion environments is required. Hydrogen-based combustion environments are known to burn faster than fossil fuels and create high-temperature combustion conditions exceeding 1200°C. These combustion conditions exceed the maximum operating temperature of YSZ, necessitating research into materials that can be used in hydrogen combustion environments above 1200°C.

In this study, we aimed to develop compositions with low thermal conductivity and phase stability for use in high-temperature hydrogen combustion environments above 1200°C. First, various rare earth oxides were individually doped into zirconia to evaluate their effects on thermal conductivity and phase stability.

Bulk specimens were fabricated using pressureless sintering based on the designed compositions. X-ray diffraction (XRD) analysis was performed to analyze the monoclinic phase transformation behavior, and thermal conductivity was measured using Laser Flash Analysis (LFA) (Fig. 1).

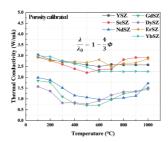


Fig. 1. Thermal conductivity of rare earth-doped zirconia ceramics

Keywords: thermal barrier coating, rare-earth-stabilized zirconia, phase stability, thermal conductivity

References

 H.X. Zhao, D.J. Li, B.W. Lv, L.J. Zhang, J. Mao, C.M. Deng, C.G. Deng, M. Liu, Corros. Sci. 255, 113110 (2025).

Research on Oxidation Behavior of Ni-Al coatings Fabricated by Twin Wire Arc Spray

^{1,2}Jae Woo Cho, ¹Yeon Woo Yoo, ¹Do Hyun Kim, ¹Hunkwan Park, ¹Sunghun Lee, ¹Hansol Kwon*

¹Extreme Materials Research Institute, Korea Institute of Materials Science, Korea

²School of Materials Science and Engineering, Pusan National University, Korea

* Corresponding author's Email: hskwon@kims.re.kr

Abstract: Ni-Al based coatings are commonly used under high-temperature and corrosive conditions, such as boiler tubes in thermal power plants. Twin-wire arc spray (TWAS) is one of the most widely used types of thermal spraying technologies, offering low cost, high deposition rate, and excellent field usability. In this study, Ni, Ni-5Al, and Ni-20Al coatings were deposited onto High Strength Low Alloy (HSLA) steel substrates using the TWAS process to investigate their protective effects under high-temperature conditions. Oxidation tests were carried out on coated and bare samples in air at 900°C. The effect of Al content on the Ni-Al coating was examined through microstructural analysis depending on high-temperature exposure time. As a result of the oxidation tests, the oxidation resistance of all coated samples was improved. The presence of Al in the coating suppressed internal oxide formation and decreased the thickness of the interdiffusion zone between the Ni-Al coating and the substrate. Among all the coatings, the Ni-20Al coating exhibited the highest oxidation resistance, which was attributed to the formation of a protective oxide scale.

Keywords: Twin wire arc spray, HSLA, Ni-Al coatings, Microstructure, High temperature oxidation

Session XI

Session Chair: Eungsun Byon(Korea Institute of Materials Science), Kazuhiro Ogawa (Tohoku University)

November 1	9th (Wednesday)	Room A 09:30~10:50, 11:10~11:50	
09:30-10:10	Plenary Advancements of High Temperature Coating for SiCf/SiC Composite Jingyang Wang (IMR-CAS)		
10:10-10:50	Plenary High-Temperature Wear and Thermal Properties of Plasma- Sprayed Mullite-Based Nanocomposite Coatings Peerawatt Nunthavarawong (King Mongkut's University of Technology North Bangkok)		
11:10-11:30	Toughening of Plasma-Sprayed Ceramic Coatings via Carbo Nanotube Reinforcement and Controlled Inter-Splat Bonding Peng-Yan Shi (Xi'an Jiaotong University)		

Advancements of high temperature coating for SiC_f/SiC composite

¹Jingyang Wang*

¹Institute of Metal Research, Chinese Academy of Sciences, China ²Liaoning Academy of Materials, China * Corresponding author's Email: jywang@imr.ac.cn

Abstract: SiC_t/SiC composite is disruptive material for the hot-section components in new generation aviation engine. High temperature coatings, including thermal barrier coating, environmental barrier coating, as well as abradable coating, can protect various SiC_t/SiC components against harsh thermal and chemical attacks in combustion environment. The request for service temperature of coatings has been critically increased up to 1350 to 1500°C, regarding the various combustion environments. The key technology depends on the whole chain advancement of intelligent design, feedstock production, coating fabrication, and coating evaluations. This talk presents the recent progresses of high temperature coating technologies for SiC_t/SiC components in aviation engine. The developments support the explorations and applications of SiC_t/SiC composite in high-thrust aeroengine.

Keywords: High temperature coating, Thermal spray, Ceramic matrix composite, Evaluation.

High-Temperature Wear and Thermal Properties of Plasma-Sprayed Mullitebased Nano Composite Coatings

¹ Peerawatt Nunthavarawong*, ¹ Torsak Boonthai, ² Chalermchai Sukhonket

¹ Tribo-Systems for Industrial Tools and Machinery Research Laboratory, The Sirindhorn International Thai-German Graduate School of Engineering (TGGS), King Mongkut's University of Technology North Bangkok (KMUTNB), Thailand ² National Metal and Materials Technology Center (MTEC), National Science and Technology Development Agency (NSTDA), Thailand.

* Corresponding author's Email: peerawatt.n@tggs.kmutnb.ac.th

Abstract: In this study, three plasma-sprayed coatings, M100 (100% mullite), M95 (95% mullite – 5%MCrAIY), and M90 (90% mullite - 5%MCrAIY - 5%nano-fly ash) were deposited on AISI 410 substrates. The objective was to assess the role of MCrAIY and nano-fly ash in improving coating performance. Notably, fly ash, an industrial by-product, was incorporated as a sustainable feedstock, aligning with cost-effectiveness and environmental considerations. According to the coefficient of thermal expansion (CTE) from room temperature to 900 °C, it was found that M90 (8.6×10⁻⁶ °C⁻¹) values are closer to the substrate (12.4×10⁻⁶ °C⁻¹) than M100 (5.8×10⁻⁶ °C⁻¹). This indicates that the addition of MCrAIY and nano-fly ash reduces thermal mismatch between the coating and substrate during heating. Thermal shock tests at 650 °C demonstrated that M90 (8×10⁻³ mg) showed intermediate mass loss, indicating balanced resistance under cyclic conditions, while high-temperature wear tests showed that M90 (4.72×10⁻⁴ mg/m) had the lowest wear rate compared with M100 (5.66×10⁻⁴ mg/m) and M95 (7.11×10⁻⁴ mg/m). Nano-indentation tests revealed that M90 achieved the highest hardness (8.71 GPa) and Young's modulus (138 GPa), confirming improved mechanical properties. These results highlight that combining MCrAIY with nano-fly ash in mullite-based coatings enhances both performance and sustainability.

Acknowledgment: This work was financially supported by King Mongkut's University of Technology North Bangkok (KMUTNB), Thailand, and the Electricity Generating Authority of Thailand with Contract No. 64-N201000-11-IO.SS03N3008589.

Keywords: mullite, nano-fly ash, thermal barrier coatings, plasma spray

Toughening of Plasma-Sprayed Ceramic Coatings via Carbon Nanotube Reinforcement and Controlled Inter-Splat Bonding

Peng-Yan Shi, Rou Chen, Xiao-Tao Luo, Chang-Jiu Li*

State Key Laboratory for Mechanical Behavior of Materials, School of Materials Science and Engineering, Xi'an Jiaotong University, Xi'an, Shaanxi Province
710049, People's Republic of China
* licj@mail.xjtu.edu.cn

Abstract: Plasma-sprayed ceramic coatings have been widely applied to industrial fields to protect metals from wear, corrosion and high temperature. However, the intra-splat microcracking due to quenching stress and inter-splat unbonded interfaces in the coatings degrade the coating performance. While the latter can be effectively addressed based on the critical bonding temperature theory, intra-splat cracking it has been regarded as intrinsic feature of the ceramic spraying process. Facing the challenge to suppress the intra-splat microcracking, in this study toughening of splats by introducing multi-walled carbon nanotubes (MWCNTs) as reinforcing agents into agglomerated Al₂O₃-TiO₂ feedstock powders is attempted. The splats and coatings were deposited by plasma spraying. The distribution and orientation of MWCNTs within the splats were analyzed, and the microstructure and fracture toughness of the coatings were evaluated. Results show that MWCNTs are well aligned following the flattening direction upon droplet impact. The significant improvement in fracture toughness is observed that is attributed to the effects of MWCNT reinforcement and controlled substrate temperature.

Session X | Functional Coatings

Chair: Jingyang Wang (IMR-CAS), Hiroki Saito (Tohoku University)

November 19th (Wednesday)		Room B 15:10~16:10
15:10-15:30	Invited Multiphase Flows and De (50–200 Pa) and an Atmospheric (ALPS) Sen-Hui Liu (Xi'an Jiaotong University)	position Mechanisms in a LPPS Long Laminar Plasma Spraying
15:30-15:50	Cold Spray Coating for Biomedical Applications Hyuk Jun Lee (Cerectron)	
15:50-16:10	Examination into Intersplat Bonding NiCrCuMoB High Entropy Alloy Coa Xin-Ru Li (Xi'an Jiaotong University)	

Multiphase flows and deposition mechanisms in a LPPS (50-200 Pa) processing and an atmospheric long laminar plasma spraying(ALPS)

Sen-Hui Liu¹, Juan. P. Trelles², Anthony B. Murphy³, Cheng-Xin Li^{1*}, Chang-Jiu Li¹,

- (1. School of Materials Science and Engineering, Xi'an Jiaotong University, Xi'an, Shaanxi 710049, China;
- 2. Department of Mechanical Engineering, University of Massachusetts Lowell, Massachusetts 01854, USA;
 - 3. CSIRO Manufacturing, Lindfield NSW 2070, Australia)

Abstract: Progresses in an novel long laminar plasma spraying(ALPS), low-pressure supersonic plasma-induced physical vapor deposition of quasi-columnar ceramic coatings is presented. The shadowing effect, flash vaporization, breakup, and atomization of in-flight droplets at a chamber pressure of 200 Pa, and maximum distance of 2200 mm were clarified. The heating history, motion, and phase transformation of the powder in the LPPS and ALPS have been studied. The maximum substrate temperature ranges from 1100 °C to 1250 °C when the plasma plume impinges perpendicularly on the substrate at the distance from 800 mm to 1500 mm. It is also found that the Mach number of the LPPS plasma flow is 3.4. The numerical simulation predicts the maximum velocity and temperature of the plasma plume are 6474.8 m/s and 12823.7 K, respectively. Furthermore, the hybrid growth model of the vapor and droplet co-deposited coating is clarified in this paper.

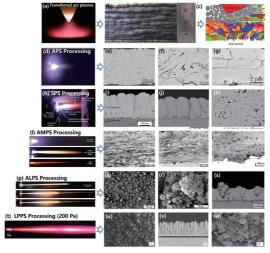


Fig. 1 (a) Transferred arc plasma processing [1]; (b) top surface view of alloys produced through arc-additive manufacturing [2]; (c) powder-bed additive manufacturing process [3]; (d) conventional atmospheric plasma spray processing (APS) [4] and (e-g) typical microstructures of /metallic ceramic coatings produced through APS [5],[6]; (h) atmospheric suspension plasma spray processing (SPS) [7] and (i-k) typical microstructures of the coatings synthesized through atmospheric SPS [8],[9]; (l) novel atmospheric micro plasma spray (AMPS) and (m-o) typical microstructures of AMPS-produced coatings; (p) atmospheric laminar plasma spray processing (ALPS) [10] and (q-s) typical microstructures of YSZ coatings produced through ALPS [11]; (t)

low-pressure plasma spray (LPPS) processing and (u-w) typical microstructures of coatings [13] (Reproduced with permission © Springer Nature, IOP Publishing Ltd., & Elsevier B.V.)

Acknowledgment: The authors acknowledge the Massachusetts Green High-Performance Computing Center (MGH - PCC). This work was supported by the National Natural Science Foundation of China (Grant No. 52001017) and the National Science and Technology Major Project (No. 2017-V I -0010-0081, 2017-V I -0002-0072).

Keywords: Plasma Spray; Laminar Plasma Spray; Modelling simulation; TBCs; PS-PVD

- [1] Xiang, J., Tanaka, K., Chen, F. F., Shigeta, M., Tanaka, M., & Murphy, A. B. (2021). Modelling and measurements of gas tungsten arc welding in argon–helium mixtures with metal vapour. Welding in the World.
- [2] Zhang, Y., Cheng, F., & Wu, S. (2021). The microstructure and mechanical properties of duplex stainless steel components fabricated via flux-cored wire arc-additive manufacturing. Journal of Manufacturing Processes, 69(July), 204–214.
- [3] Gunasegaram, D. R., Murphy, A. B., Barnard, A., Debroy, T., Matthews, M. J., Ladani, L., & Gu, D. (2021). Towards developing multiscale-multiphysics models and their surrogates for digital twins of metal additive manufacturing. Additive Manufacturing, 46(April).
- [4] Liu, S.-H., Trelles, J. P., Murphy, A. B., He, W.-T., Shi, J., Li, S., Li, C.-J., Li, C.-X., & Guo, H.-B. (2021). Low-Pressure Plasma-Induced Physical Vapor Deposition of Advanced Thermal Barrier Coatings: Microstructures, Modelling and Mechanisms. *Materials Today Physics*, *21*, 100481.
- [5] T. Liu, S. Yao, L. Wang, G. Yang, C. Li, C. Li, Plasma-sprayed thermal barrier coatings with enhanced splat bonding for CMAS and corrosion protection, J. Therm. Spray Technol. 25 (January) (2016) 213e221.
- [6] T. Liu, S. Zhang, X. Luo, G. Yang, C. Li, C. Li, High heat insulating thermal barrier coating designed with large two-dimensional inter- lamellar pores, J. Therm. Spray Technol. 25 (1) (2016) 222e230.
- [7] S. Pal, A. Deore, N.M. Alford, A. Templeton, S.J. Penn, High temperature thermal properties of columnar yttria stabilized zirconia thermal barrier coating performed, J. Phys. Conf. (745) (2016): 032012
- [8] D. Zhou, J. Malzbender, Y.J. Sohn, O. Guillon, R. Vaßen, Sintering behavior of columnar thermal barrier coatings deposited by axial suspension plasma spraying (SPS), J. Eur. Ceram. Soc. 39 (2e3) (2019) 482e490.
- [9] D. Zhou, D.E. Mack, E. Bakan, G. Mauer, D. Sebold, O. Guillon, R. Vaßen, Thermal cycling performances of multilayered yttria-stabilized zirconia/ gadolinium zirconate thermal barrier coatings, J. Am. Ceram. Soc. 103 (3) (2020) 2048e2061.
- [10] S.H. Liu, C.X.C.J. Li, H.Y. Zhang, S.L. Zhang, L. Li, P. Xu, G.J. Yang, C.X.C.J. Li, A novel structure of YSZ coatings by atmospheric laminar plasma spraying technology, Scripta Mater. 153 (2018) 73e76.
- [11] S.-H. Liu, J.P. Trelles, C.-J. Li, H.B. Guo, C.-X. Li, Numerical analysis of the plasma-induced self-shadowing effect of impinging particles and phases transformation in a novel long laminar plasma jet, J. Phys. Appl. Phys. 53 (2020) 375202

Cold spray coating for biomedical applications

¹H. Lee*, ^{1,2} K. H .Ko, ²B. Ahn

¹Cerectron Co., Ltd., Republic of Korea

²Department of Energy Systems Research, Ajou University, Suwon, Republic of Korea

* Corresponding author's Email: materialist@cerectron.com

This paper demonstrates that the cold sprayed Hydroxy Apatite (HA) coating on the PEEK materials increased biocompatibility in vitro and promoted osteointegration in vivo, which suggests that the Hydroxy Apatite (HA) coating could improve the biofunctionality of various medical devices used in clinical applications.

Microstructure and Tribological Property Correlations in Cold-Sprayed Fe-Based Amorphous Alloy Coatings

¹Kyung-Un Won, ¹Yong-Hoon Cho, ²Gi-Su Ham, ²Geun-Sang Cho, ²Choongnyun Paul Kim, ¹Kee-Ahn Lee*

¹ Department of Materials Science and Engineering, Inha University, Incheon 22212, Republic of Korea

² KOLON Advanced Research Cluster, KOLON industries, Seoul 07793, Republic of Korea

* Corresponding author's Email: keeahn@inha.ac.kr

Abstract: Amorphous alloys possess a densely packed atomic structure based on short-range order. The absence of grain boundaries and dislocations mitigates local stress concentration, thereby suppressing crack initiation and propagation [1]. Furthermore, their high elastic limit and hardness lead to shallow and uniform surface deformation during contact, resulting in lower coefficients of friction (COF) and wear rate than crystalline alloys. This behavior is also advantageous for the rapid formation and maintenance of a continuous and stable protective tribofilm during sliding processes [2]. Cold spray (CS) is a solid-state, supersonic deposition process with particle bonding driven by severe plastic deformation and adiabatic shear under minimal thermal exposure [3]. As a result, melt-related oxidation and phase transformations are avoided. Consequently, CS is well suited for fabricating amorphous coatings. The low process temperature and limited thermal exposure preserve the amorphous fraction and suppress crystallization and oxidation during deposition [4]. Recent studies report that these benefits are maintained because cold spray proceeds as a solid-state deposition without melting.

In this study, amorphous coatings were fabricated under three conditions (CS1, CS2, and CS3) by varying the gas temperature of the cold spray process. XRD and DSC analyses confirmed that the amorphous phase was retained on a coating scale for all three conditions. Cross-sectional and surface observations (Fig. 1) revealed the coexistence of strongly bonded regions with weakly bonded areas, micropores, and microcracks, with limited oxygen signals observed near the particle boundaries. Pin-on-disk tests (counterbody: Al₂O₃ pin) yielded wear rates (Fig 2. (b)) of 1.27×10⁻⁵, 2.02×10⁻⁵, and 2.07×10⁻⁵ mm³/mN for CS1, CS2, and CS3, respectively. These values demonstrate 2-4 times superior wear resistance compared with the same material deposited by HVOF in a previous study. The COF (Fig 2. (c)) stabilized most rapidly for CS1, while CS2 and CS3 were accompanied by initial fluctuations and a gradual increase. Analysis of the worn surfaces and cross-sections commonly showed abrasive grooves and oxide films. Delamination craters and crack propagation originating at interparticle boundaries were more frequent in CS2 and CS3. The tribological performance was found to be more significantly governed by the continuity and integrity of interparticle bonding than by hardness alone. For CS1, the small interfacial gaps and the continuous network of strong bonds resulted in shallow and uniform contact deformation This enabled early formation and stable retention of a protective tribofilm and led to the lowest wear rate (1.27×10⁻⁵ mm³/mN) with a stable COF. In contrast, the interconnected network of weak bonds, pores, and cracks in CS2 and CS3 induced a cycle of local stress concentration, delamination, and subsequent tribofilm reformation, resulting in increased wear rates of 2.02×10⁻⁵ and 2.07×10⁻⁵ mm³/mN. In summary, it was confirmed that preserving the amorphous fraction while ensuring the continuity of strong interparticle bonding are the key design factors determining the stability of the tribofilm and the suppression of wear.

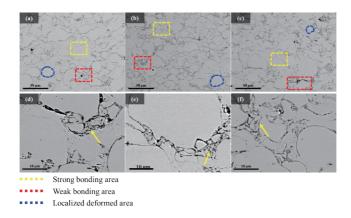


Fig. 1. Cross-sectional microstructure observation photographs of cold spray coating layers.

(a, d) CS1, (b, e) CS2, (c, e) CS3

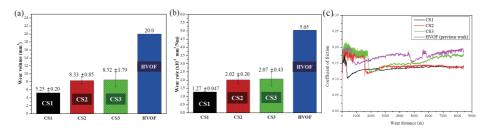


Fig. 2. Wear behavior of cold sprayed amorphous coating layers

(a) wear volume, (b) wear rate (c) coefficient of friction

Keywords: Cold spray, Amorphous alloy, Microstructure, Wear properties, Tribology

- 1. Cao, F., Huang, Y., He, C., Fan, H., Wei, L., Ning, Z., & Sun, J. (2021). Wear behaviors of a Ti-based bulk metallic glass at elevated temperatures. Frontiers in Materials, 8, 695840.
- 2. Murphy, A. G., Norman, A., Meagher, P., & Browne, D. J. (2022). Wear of bulk metallic glass alloys for space mechanism applications. Journal of Tribology, 144(9), 091706.
- 3. Assadi, H., Kreye, H., Gärtner, F., & Klassen, T. J. A. M. (2016). Cold spraying—A materials perspective. Acta Materialia, 116, 382-407.
- 4. Wang, Q., Han, P., Yin, S., Niu, W. J., Zhai, L., Li, X., ... & Han, Y. Current research status on cold sprayed amorphous alloy coatings: a review. Coatings. 2021; 11 (2): 206.

Session XI

Chair: Eungsun Byon(Korea Institute of Materials Science), Kazuhiro Ogawa (Tohoku University)

November 19th (Wednesday)		Room A 09:30~10:50, 11:10~11:50
09:30-10:10	Plenary Advancements of High Temperature Coating for SiCf/S	
	Composite	
	Jingyang Wang (IMR-CAS)	
10:10-10:50	Plenary High-Temperato	ure Wear and Thermal Properties of Plasma-
	Sprayed Mullite-Based N	lanocomposite Coatings
	Peerawatt Nunthavarawon	g (King Mongkut's University of Technology North
	Bangkok)	
11:10-11:30	Toughening of Plasm	na-Sprayed Ceramic Coatings via Carbon
	Nanotube Reinforcemer	nt and Controlled Inter-Splat Bonding
	Peng-Yan Shi (Xi'an Jiaoton	ng University)

Advancements of high temperature coating for SiC_f/SiC composite

¹Jingyang Wang*

¹Institute of Metal Research, Chinese Academy of Sciences, China ²Liaoning Academy of Materials, China * Corresponding author's Email: jywang@imr.ac.cn

Abstract: SiC_t/SiC composite is disruptive material for the hot-section components in new generation aviation engine. High temperature coatings, including thermal barrier coating, environmental barrier coating, as well as abradable coating, can protect various SiC_t/SiC components against harsh thermal and chemical attacks in combustion environment. The request for service temperature of coatings has been critically increased up to 1350 to 1500°C, regarding the various combustion environments. The key technology depends on the whole chain advancement of intelligent design, feedstock production, coating fabrication, and coating evaluations. This talk presents the recent progresses of high temperature coating technologies for SiC_t/SiC components in aviation engine. The developments support the explorations and applications of SiC_t/SiC composite in high-thrust aeroengine.

Keywords: High temperature coating, Thermal spray, Ceramic matrix composite, Evaluation.

High-Temperature Wear and Thermal Properties of Plasma-Sprayed Mullitebased Nano Composite Coatings

¹ Peerawatt Nunthavarawong*, ¹ Torsak Boonthai, ² Chalermchai Sukhonket

¹ Tribo-Systems for Industrial Tools and Machinery Research Laboratory, The Sirindhorn International Thai-German Graduate School of Engineering (TGGS), King Mongkut's University of Technology North Bangkok (KMUTNB), Thailand ² National Metal and Materials Technology Center (MTEC), National Science and Technology Development Agency (NSTDA), Thailand.

* Corresponding author's Email: peerawatt.n@tggs.kmutnb.ac.th

Abstract: In this study, three plasma-sprayed coatings, M100 (100% mullite), M95 (95% mullite – 5%MCrAIY), and M90 (90% mullite - 5%MCrAIY - 5%nano-fly ash) were deposited on AISI 410 substrates. The objective was to assess the role of MCrAIY and nano-fly ash in improving coating performance. Notably, fly ash, an industrial by-product, was incorporated as a sustainable feedstock, aligning with cost-effectiveness and environmental considerations. According to the coefficient of thermal expansion (CTE) from room temperature to 900 °C, it was found that M90 (8.6×10⁻⁶ °C⁻¹) values are closer to the substrate (12.4×10⁻⁶ °C⁻¹) than M100 (5.8×10⁻⁶ °C⁻¹). This indicates that the addition of MCrAIY and nano-fly ash reduces thermal mismatch between the coating and substrate during heating. Thermal shock tests at 650 °C demonstrated that M90 (8×10⁻³ mg) showed intermediate mass loss, indicating balanced resistance under cyclic conditions, while high-temperature wear tests showed that M90 (4.72×10⁻⁴ mg/m) had the lowest wear rate compared with M100 (5.66×10⁻⁴ mg/m) and M95 (7.11×10⁻⁴ mg/m). Nano-indentation tests revealed that M90 achieved the highest hardness (8.71 GPa) and Young's modulus (138 GPa), confirming improved mechanical properties. These results highlight that combining MCrAIY with nano-fly ash in mullite-based coatings enhances both performance and sustainability.

Acknowledgment: This work was financially supported by King Mongkut's University of Technology North Bangkok (KMUTNB), Thailand, and the Electricity Generating Authority of Thailand with Contract No. 64-N201000-11-IO.SS03N3008589.

Keywords: mullite, nano-fly ash, thermal barrier coatings, plasma spray

Toughening of Plasma-Sprayed Ceramic Coatings via Carbon Nanotube Reinforcement and Controlled Inter-Splat Bonding

Peng-Yan Shi, Rou Chen, Xiao-Tao Luo, Chang-Jiu Li*

State Key Laboratory for Mechanical Behavior of Materials, School of Materials Science and Engineering, Xi'an Jiaotong University, Xi'an, Shaanxi Province
710049, People's Republic of China
* licj@mail.xjtu.edu.cn

Abstract: Plasma-sprayed ceramic coatings have been widely applied to industrial fields to protect metals from wear, corrosion and high temperature. However, the intra-splat microcracking due to quenching stress and inter-splat unbonded interfaces in the coatings degrade the coating performance. While the latter can be effectively addressed based on the critical bonding temperature theory, intra-splat cracking it has been regarded as intrinsic feature of the ceramic spraying process. Facing the challenge to suppress the intra-splat microcracking, in this study toughening of splats by introducing multi-walled carbon nanotubes (MWCNTs) as reinforcing agents into agglomerated Al₂O₃-TiO₂ feedstock powders is attempted. The splats and coatings were deposited by plasma spraying. The distribution and orientation of MWCNTs within the splats were analyzed, and the microstructure and fracture toughness of the coatings were evaluated. Results show that MWCNTs are well aligned following the flattening direction upon droplet impact. The significant improvement in fracture toughness is observed that is attributed to the effects of MWCNT reinforcement and controlled substrate temperature.

Poster Session

P1	Hierarchical Microstructure-Mechanical Property Correlations in Superior Strength 5 wt% Cr Cold-Work Tool Steel Manufactured by Direct Energy Deposition Kyung Un Won (Inha University)
P2	Optimizing Electrostatic Chuck Performance through ZrO_2/Al_2O_3 ratio and Doping Components (SiO ₂ and Y ₂ O ₃) Seungho Baek (Electro Static Technology, Inc.)
P3	Fabrication, Microstructure, and Mechanical Properties of Fe-16Mn-10Al-5Ni-0.86C (wt.%) Lightweight Steel Manufactured by Directed Energy Deposition Soobin Kim (Inha University)
P4	Influence of Wire Arc Additive Manufacturing Induced Microstructure on Elevated-Temperature Compression of Ti-6Al-4V Soobin Kim (Inha University)
P5	Deposition Behavior and Microstructural Characterization of Ti-6Al-4V/Al ₂ O ₃ Functionally Graded Materials using Directed Energy Deposition(DED) <i>Tae-Hyeon Kim (Kyungnam University)</i>
P6	Development of a High-Performance Abradable Coating with Thermal and Structural Stability Lee Youngseo (SHINHWA METAL CO., LTD.)
P7	Development of Oxidation-Resistant Silicide and Aluminide Diffusion Coatings for Aerospace and Power Generation Components Yoon Sangin (SHINHWA METAL CO., LTD.)
P8	Spheroidization of Titanium Powders by using a Reverse-polarity Plasma Torch with an Exit Nozzle Jun-Ho Seo (Jeonbuk National University)
P9	Gradient Cooling Approach in Vacuum Plasma Spray Coating Process for Crack Formation Control in ZrC Coating Layers on Carbon-carbon Composite Ho Seok Kim (Jeonbuk National University)
P10	Enthalpy Probe Measurement and Numerical Analysis on the Thermal Plasma Jets Generated by a Reverse-polarity Plasma Torch with an Exit Nozzle Jun-Ho Seo (Jeonbuk National University)

ATSC 2025

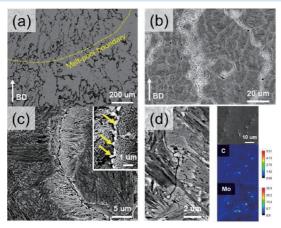
P11	Machine-Learning Interatomic Potential for Temperature-Dependent Properties of Nb ₂ AlC MAX Phase as a Bond Coat Hayoung Son (Soongsil University)
P12	Effect of APS Process Parameter Control on the Microstructure and Therma

- P12 Effect of APS Process Parameter Control on the Microstructure and Thermal Fatigue Characteristics of Thermal Barrier Coatings

 Hongbin Cheng (Changwon National University)
- P13 Enhanced Oxidation Resistance of ZrC through Multi-Layer Coatings: Ab Initio Calculation of Oxygen Diffusion Pathways

 Jaewon Choi (Soongsil University)
- P14 Mixed Oxide Formation in NiCoCrAlY Powders and Thermal-Sprayed Coatings: Influence of Heat Exposure during Processing Sang-In Kim (Kyungnam University)
- P15 Study on Bond Materials for Protective UHTC Layers on Graphite by Air Plasma Spraying Sik Chol Kwon (BST)
- P16 Influence of Ammonia Combustion Atmosphere on the Durability of Metallic Bond Coat in Thermal Barrier Coating Sohee Baek (Changwon National University)
- P17 Life Assessment of 8% Yttria-Stabilized Zirconia (YSZ) Thermal Barrier Coating (TBC) Through Isothermal and Thermal Cycling Tests

 Somi Lee (Seoul National University of Science and Technology)
- P18 CFD Analysis of Particle Heating in VPS of MCrAlY under Ar–H2 Mixed Plasmas Byeongryun Jeon (Korea Institute of Materials Science)
- P19 Analysis of Oxidation Behavior According to the Addition of Ta or Hf/Si in Thermal Barrier Coating Bond Coat Powder Su-Han Bae (Kyungnam University)
- P20 Granular Manufacturing Technology and APS Coating and Evaluation Study for Yb-Disilicate Spray Coating for Environmental Barrier Coating *Jiyoo Kim (Sewon-Hardfacing)*


Hierarchical Microstructure–Mechanical Property Correlations In Superior Strength 5 wt% Cr Cold-Work Tool Steel Manufactured by Direct Energy Deposition

¹Jung-Hyun Park, ¹Kyung-Un Won, ¹Kee-Ahn Lee*

¹ Department of Materials Science and Engineering, Inha University, Incheon 22212, Republic of Korea

* Corresponding author's Email: keeahn@inha.ac.kr

Abstract: Metal additive manufacturing process technology holds great potential for a wide range of industries because it enables the immediate manufacture of optimized part geometries. Among the various metal additive manufacturing (AM) methods, direct energy deposition (DED), which is based on laser cladding engineering, uses an energy source to precisely deposit the feedstock onto a substrate. This method has the advantage of rapid manufacturing of parts with fewer size limitations [1]. Therefore, DED has shown promise in tool and die industries, where these advantages are most needed. The DED process enables rapid deposition and repair, providing an efficient approach to producing durable tool steel components. Cold-work tool steels offer excellent hardness, toughness, strength, and wear resistance, rendering them suitable for a wide range of industrial applications. Among these, 5 wt% Cr cold-work tool steel (Uddeholm Caldie) is known for its exceptional resistance to chipping and cracking as well as its high strength, making it ideal for use in cold-work parts, such as blanking dies, machine knives, rolling dies, and cold forging and trimming operations [2]. Compared with other high-carbon, high-chromium tool steels, Caldie materials have reduced carbon (0.7-0.8 wt%) and chromium (4.5-5.0 wt%) contents to mitigate the adverse effects of coarse carbides. Conversely, the molybdenum and vanadium contents are increased to precipitate various small carbides during heat treatment, forming uniform and fine-tempered martensite to improve the dimensional stability. Caldie steel offers excellent mechanical properties, availability, accessibility, and competitive pricing. This could provide attractive guidelines for its application in the high carbon tool steel sector, if successfully manufactured using the DED process. In addition, the microstructure and properties of tool steel parts manufactured by DED can be presented more objectively than those of conventional materials under the same conditions. However, to date, no studies have reported on the properties of 5 wt% Cr cold-work tool steel manufactured using the DED process. In this study, Caldie tool steel was fabricated via DED for the first time, and the effects of post-heat treatment on its hierarchical microstructure and mechanical properties were investigated and compared with those of wrought (reference) material. The as-built sample exhibited a mixed microstructure comprising lath martensite, retained austenite, polygonal ferrite, and carbide networks, which transformed into full martensite with fine carbides after heat treatment (DED-HT). The tensile strength of the DED Caldie material increased from 1340 MPa to 1949 MPa after heat treatment, demonstrating superior strength compared to other heat-treated, DED processed high-carbon tool steels. Compared to DED-HT, the wrought material exhibited finer martensite, a more uniform Bain group distribution, and finer carbides, resulting in higher strength. This study provides insights into the effects of heat treatment on the hierarchical microstructure and mechanical behavior of Caldie tool steel manufactured by DED.

Fig. 1. (a) Low magnification OM image of layer-wise microstructure. (b) SEM image showing initial microstructures of the DED-built sample after etching. (c) Precipitate network formed along the build direction, (d) Prior austenite grain boundary region with C and Mo microsegregation.

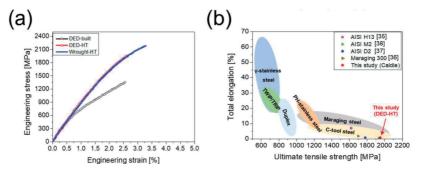


Fig. 2. Room-temperature mechanical properties of DED-built, DED-HT, and Wrought-HT 5 wt% cold-work tool steels: (a) tensile stress–strain curves (b) comparison of tensile properties between the DED-HT material and other high-strength steels fabricated by DED followed by post-heat treatment.

Keywords: direct energy deposition, 5 wt% Cr cold work tool steel, post-heat treatment, mechanical property

- 1. Wang, S. Zhu, L. Fuh, J.Y.H. Zhang, H. Yan, W. (2020) Multi-Physics Modeling and Gaussian Process Regression Analysis of Cladding Track Geometry for Direct Energy Deposition. Optics and Lasers in Engineering, 127, 105950.
- 2. Kirkhorn, L. Bushlya, V. Andersson, M. Ståhl, J.-E. (2013). The Influence of Tool Steel Microstructure on Friction in Sheet Metal Forming. Wear, 302, 1268-1278.

Optimizing Electrostatic Chuck Performance through ZrO_2/Al_2O_3 ratio and Doping Components (SiO₂ and Y₂O₃)

¹Seungho Baek, ¹Jae-Hyuk Park, ¹Young Gon Kim, ¹Jongwoo Lim*

* Corresponding author's Email: jwlim@estek.co.kr

¹Electro Static Technology, Inc., 103-14, Gajangsaneopseobuk-ro, Osan-si, Gyeonggi-do, 18102, Korea

Abstract: Electrostatic chucks (ESCs) are essential components in semiconductor and display processing equipment. Recent research has explored the doping of Al_2O_3 with TiO_2 to enhance ESC performance by facilitating the transition to the Johnsen-Rahbek (J-R) mode. While this approach effectively improves clamping force, the lowered resistivity can compromise the electrical stability of the ESC, affecting its reliability during operation. In this study, we present the enhancement of ESC performance through ZrO_2/Al_2O_3 composites, with additional doping of Y_2O_3 and SiO_2 . The composites were deposited by Atmospheric Plasma Spraying(APS). Fig. 1 shows electrical properties of APS-coated films as a function of $ZrO_2-Al_2O_3$ ratios. Notably, the mixed powder with the highest ZrO_2 content achieved a relative dielectric constant of about 22 with a volume resistivity of $\sim 1.0 \times 10^{14} \Omega \cdot \text{cm}$. The increased dielectric constant and reduced resistivity induced J-R mode, leading to a clamping force of 25gf/cm^2 on glass substrate, exceeding the industrial requirement of $10 \sim 15 \text{gf/cm}^2$. Additionally, It demonstrated a breakdown voltage of approximately 4.2kV and a dielectric strength of about $17 \text{V}/\mu\text{m}$, indicating better voltage stability compared to traditional TiO_2 -doped Al_2O_3 . Our results demonstrate that ZrO_2 -Al $_2O_3$ coatings, along with Y_2O_3 and SiO_2 doping, have potential as a promising alternative to TiO_2 -doped Al_2O_3 chucks in advanced manufacturing applications.

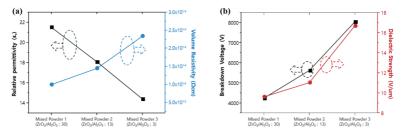
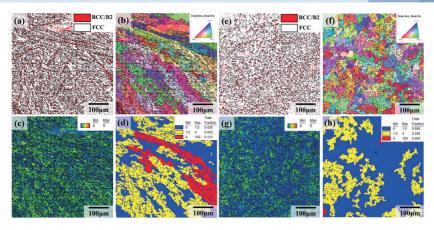


Fig. 1. Electrical properties of APS-coated films as a function of ZrO₂/Al₂O₃ ratios: (a) Relative dielectric constant and Volume resistivity; (b) Breakdown voltage and Dielectric strength

Keywords: Electrostatic chuck, Atmospheric plasma spraying, Johnsen-Rahbek effect, Dielectric strength

- 1. Zhou, Nianying, et al., Ceram. Int., 50.2, 2836-2844 (2024).
- 2. Kim, Minjae, et al., Ceram.Int., 49, 24065-24070 (2023).


Fabrication, microstructure, and mechanical properties of Fe-16Mn-10Al-5Ni-0.86C (wt.%) lightweight steel manufactured by directed energy deposition

¹Yuanjiu Huang, ¹Soobin Kim, ^{1,2}Amol B. Kale, ¹Tae-Hoon Kang, ³Han-Soo Kim, Kee-Ahn Lee*

Department of Materials Science and Engineering, Inha University, Korea
 Magnesium Technology Innovation Center (MTIC), Pinetree PosMagnesium Co. Ltd., Korea
 KONASOL Co. Ltd., Korea

* Corresponding author's Email: keeahn@inha.ac.kr

Abstract: Laser Directed Energy Deposition (L-DED), as an advanced Additive Manufacturing (AM) technology, provides an efficient approach for fabricating complex lightweight steel components [1,2]. However, due to a lower cooling rate compared to Laser Powder Bed Fusion (L-PBF), the microstructure of L-DEDfabricated materials is relatively coarse, limiting their mechanical properties [3,4]. Additionally, lightweight steels strengthened by κ-carbide tend to undergo microstructural coarsening during heat treatment, further weakening their strengthening effect. Therefore, developing suitable strengthening mechanisms for the L-DED process is crucial for optimizing material properties. In this study, B2-phase-strengthened Fe-16Mn-10Al-5Ni-0.86C (wt.%) lightweight steel was fabricated using the L-DED process, and the effects of heat treatment on its microstructure and mechanical properties were systematically investigated. Microstructural analysis revealed that the as-deposited sample consists of an FCC matrix phase and a BCC/B2 phase, with minor DO₃ precipitates, exhibiting columnar and dendritic structures. After heat treatment at 900°C for 1 hour, dislocation nucleation facilitated the precipitation of fine B2 phases, which were uniformly distributed within austenite grains and along grain boundaries, with an average size of 4.58 μm, accompanied by a small amount of fine κ-carbide. The dispersed distribution of precipitates significantly enhanced the lightweight steel's strengthening effect, optimizing the balance between strength and ductility. After heat treatment, the yield strength increased to 1058.4 MPa, the ultimate tensile strength reached 1423.5 MPa, and the elongation significantly improved to 16.3%, closely approaching the properties of the same composition lightweight alloy in the cold-rolled and tempered condition. This study demonstrates that the L-DED process, combined with appropriate heat treatment, effectively improves the mechanical properties of lightweight steel and provides theoretical guidance and process insights for microstructural control and performance optimization in L-DED-fabricated lightweight steels.

Fig. 1. EBSD results for as-built (a, b, c, d) and HT-DED (e, f, g, h) Fe-16Mn-10Al-5Ni-0.86C lightweight steel specimens: Phase maps (a and e), ND-IPF (b and f), KAM (c and g) and GOS (d and h) maps.

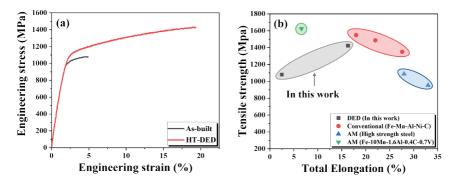


Fig. 2. (a) Engineering stress-strain curves and (b) comparison with conventional LWS [5], advanced high strength steel-AM [6] and AM-Fe-10Mn-1.6Al-0.4C-0.7V [7].

Keywords: Fe-16Mn-10Al-5Ni-0.86C lightweight steel; Directed energy deposition; Microstructure; Heat treatment; Microstructure; Microstructure; Mechanical Properties

- [1] W.E. Frazier, Metal Additive Manufacturing: A Review, J Mater Eng Perform 23 (2014) 1917–1928.
- [2] T. DebRoy, H.L. Wei, J.S. Zuback, T. Mukherjee, J.W. Elmer, J.O. Milewski, A.M. Beese, A. Wilson-Heid, A. De, W. Zhang, Additive manufacturing of metallic components – Process, structure and properties, Prog Mater Sci 92 (2018) 112–224.
- [3] X. Kang, S. Dong, H. Wang, S. Yan, X. Liu, H. Ren, Effect of Thermal Cycle on Microstructure Evolution and Mechanical Properties of Selective Laser Melted Low-Alloy Steel, Materials 12 (2019) 3625.

ATSC 2025

- [4] Y. Chen, K. Zhang, J. Huang, S.R.E. Hosseini, Z. Li, Characterization of heat affected zone liquation cracking in laser additive manufacturing of Inconel 718, Mater Des 90 (2016) 586–594.
- [5] S.-H. Kim, H. Kim, N.J. Kim, Brittle intermetallic compound makes ultrastrong low-density steel with large ductility, Nature 518 (2015) 77–79.
- [6] P. Köhnen, S. Ewald, J.H. Schleifenbaum, A. Belyakov, C. Haase, Controlling microstructure and mechanical properties of additively manufactured high-strength steels by tailored solidification, Addit Manuf 35 (2020) 101389.
- [7] W. Li, J. Li, X. Duan, C. He, Q. Wei, Y. Shi, Dislocation-induced ultra-high strength in a novel steel fabricated using laser powder-bed-fusion, Materials Science and Engineering: A 832 (2022) 142502.

Influence of Wire Arc Additive Manufacturing Induced Microstructure on Elevated-Temperature Compression of Ti-6Al-4V

¹Soobin Kim, ²Dong-Hyuck Kam, ¹Kee-Ahn Lee*

¹Department of Materials Science and Engineering, Inha University, Korea

²Advanced Joining & Additive Manufacturing R&D, Korea Institute of Industrial Technology, Korea

* Corresponding author's Email: keeahn@inha.ac.kr

Abstract: Ti-6Al-4V is a key material for aerospace and biomedical applications owing to its high specific strength, corrosion resistance, thermal stability, and biocompatibility [1-3]. Wire-arc additive manufacturing (WAAM) offers high deposition efficiency and rapid fabrication of near-net-shape components, thereby reducing material waste and production costs for Ti-6Al-4V [4,5]. Due to its layer-wise thermal history, WAAM-fabricated Ti-6Al-4V develops a distinctive microstructure that strongly influences mechanical behavior at elevated temperatures. This study investigates the effect of WAAM-induced microstructure on high-temperature deformation by comparative analysis with wrought Ti-6Al-4V. Compression tests were performed from room temperature to 700°C at a true strain rate of 1×10⁻³ s⁻¹. The initial microstructures of both alloys were observed using SEM, as shown in Fig. 1. The WAAM sample exhibited columnar prior-β grains elongated along the build direction and a complex intragranular α-lath morphology (Fig. 1(a₁, a₂)), whereas the wrought sample displayed an equiaxed α-grain structure (Fig. 1(b)). EBSD analysis indicated an α-phase dominance of 99.8% and a highangle grain boundary fraction 80.8% in the WAAM condition. In compression, WAAM Ti-6Al-4V exhibited compressive yield strengths of 1034.1 MPa (RT), 679.1 MPa (300 °C), 646.2 MPa (500 °C), and 318.1 MPa (700 °C), whereas the wrought material showed 998.8 MPa, 619.9 MPa, 530.7 MPa, and 224.6 MPa, respectively. Fig. 2 presents the high-temperature compression response: (a) stress-strain curves at each test temperature and (b) a plot of compressive yield strength as a function of temperature. The superior high-temperature mechanical stability of the WAAM material is attributed to its columnar prior-β topology, dense α-lath network, and elevated high-angle boundary fraction, which collectively impede dislocation motion and retard thermally activated softening. These results establish processing-structure-property correlations and highlight the potential of WAAM Ti-6Al-4V for elevated-temperature structural applications.

Fig. 1. Initial SEM microstructures of Ti-6Al-4V alloys (a1, a2) WAAM sample (b) Wrought sample

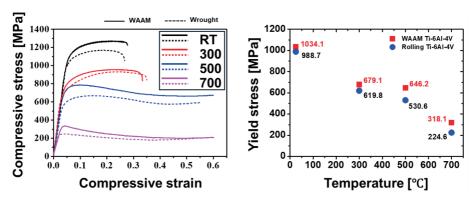


Fig. 2. High-temperature compressive behaviour of WAAM and wrought Ti-6Al-4V alloys (a) stress-strain curves (b) Compressive yield strength as a function of temperature

Keywords: Wire are additive manufacturing, Ti-6Al-4V, High-temperature compression, Microstructure

- P. Bocchetta, L.-Y. Chen, J.D.C. Tardelli, A.C. Reis, A.-C. F. Almeraya-Calderón, P. Leo, Passive Layer and Corrosion Resistance of Biomedical Ti-6Al-4V and β-Ti Alloys, Coatings, 11 (2021) 487.
- N.W. Khun, A.W.Y. Tan, W. Sun, E. Liu, Wear and Corrosion Resistance of Thick Ti-6Al-4V Coating Deposited on Ti-6Al-4V Substrate via High-Pressure Cold Spray, J. Therm. Spray Tech, 26 (2017) 1393-1407.
- A. Revathi, U. Vijayalakshmi, M. Geetha, Comparative study of electrochemical behaviour of CPtitanium and Ti-6Al-4V with other titanium based alloys for biomedical applications, 29 (2014) B49-B53.
- T. Childerhouse, M. Jackson, Near Net Shape Manufacture of Titanium Alloy Components from Powder and Wire: A Review of State-of-the-Art Process Routes, Metals, 6 (2019) 689.
- 5. J. Liu, Y. Xu, Y. Ge, Z. Hou, S. Chen, Wire and arc additive manufacturing of metal components: a review of recent research developments, Int. J. Adv. Manuf. Technol 111 (2020) 149-198.

Analysis of the deposition behavior and microstructure of Ti-6Al-4V/Al₂O₃ functionally graded materials manufactured by the DED (Directed Energy Deposition) process

¹Tae-Hyeon Kim, ¹Sang-In Kim, ¹Su-Han Bae, ²Se-Yun Kim*

Abstract:

Ti-6Al-4V (Ti64) alloy forms a protective TiO₂ layer on its surface under high-temperature oxidation environments. However, as this layer grows, internal stresses accumulate due to the mismatch in the coefficient of thermal expansion (CTE) between the Ti64 substrate and the TiO₂ oxide scale, leading to cracking and spallation of the oxide layer. To address this issue, ceramic-based surface treatment and coating technologies have been proposed, and additive manufacturing (AM) has attracted particular attention owing to its capability for localized repair of damaged regions and deposition of new coating layers. In this study, functionally graded materials (FGMs) composed of Ti64 and Al₂O₃ were fabricated on a Ti64 substrate using the directed energy deposition (DED) process with Al₂O₃ powders as feedstock. By varying three major process parameters—laser power, scanning speed, and powder feed rate—1D, 2D, and 3D deposition experiments were conducted to determine the optimal processing conditions. In the 1D single-bead deposition, bead width was measured using polarized optical microscopy (OM), and in the 2D plane deposition, layer thickness was evaluated.

Subsequently, the cross-sectional microstructure and compositional distribution of the 3D cube were analyzed using scanning electron microscopy (SEM) and energy-dispersive X-ray spectroscopy (EDS). Through these experiments, the deposition behavior and microstructural characteristics of Ti64/Al₂O₃ FGMs were investigated, and the mechanisms of metal–ceramic bonding were proposed.

Acknowledgment:

This study was supported by the Korea Institute of Energy Technology Evaluation and Planning's Energy Human Resources Development Project (RS-2024-KP002514) and the Korea Institute of Industrial Technology Planning and Evaluation's Automotive Industry Technology Development Project (RS-2025-02317513) and Space-K BIG Project Program(RS-2025-16063273) funded by the Korea AeroSpace Administration(KASA).

Keywords: Ti-6Al-4V(Ti64), Al₂O₃, additive manufacturing(AM), directed energy deposition (DED), fuctionally graded materials(FGMs)

¹ Department of Mechatronics Engineering, Kyungnam University, Korea

² Department of Advanced Materials and Engineering, Kyungnam University, Korea

^{*} Corresponding author's Email: kimseyun@kyungnam.ac.kr

Development of a High-Performance Abradable Coating with Thermal and Structural Stability

Youngseo Lee, Heejin Park, Giljin Jung, Changwoo Lee

¹Department, Affiliation, Country

²Department of Thermal Spray Research Center, SHINHWA METAL CO., LTD.,, Korea

* Corresponding author's Email: eoe04@shmetal.co.kr

Abstract: The increasing demand for higher efficiency and reliability in aviation and power generation has emphasized the critical role of abradable seal coatings in minimizing blade-tip clearances and enhancing thermal stability in gas turbines. The studies have shown that conventional abradable coatings often suffer from densification, susceptibility to erosion, and limited thermal shock resistance under prolonged service conditions. To address these limitations, Shinhwa Metal has developed an advanced abradable coating system specifically engineered for severe turbine environments, with the aim of improving clearance management and extending service life.

The coating is characterized by a low elastic modulus, high resistance to sintering, and a controlled defect—macroporous microstructure. This compliant, low-stiffness architecture effectively mitigates thermal shock damage and maintains structural stability under cyclic thermal loading, consistent with recent reports highlighting the importance of microstructural design in abradable systems. Abradability testing, conducted in accordance with Oerlikon Metco standard procedures, replicated realistic blade-incursion conditions and enabled a rigorous assessment of coating performance.

Examination of wear plate specimens, combined with detailed microstructural characterization, revealed uniform cutting behavior and robust structural integrity. Wear maps established correlations between pore architecture and rub response, providing valuable insights into performance optimization. The coating developed by Shinhwa Metal not only achieves superior abradability, oxidation resistance, and erosion resistance, but also provides a reliable solution in abradable coating technology for next-generation gas turbine applications.

Acknowledgment:

Keywords: Abradable coating, Gas turbines, Thermal stability, Microstructure

Development of Oxidation-Resistant Silicide and Aluminide Diffusion Coatings for Aerospace and Power Generation Components

Sangin Yoon¹, Sangwoon Kang¹, Giljin Jeong¹, Changwoo Lee¹

¹Thermal spray Research center, Shinhwa metal Co.,Ltd, Korea

* Corresponding author's Email: shrnd400@shmetal.co.kr

Abstract: The development of advanced oxidation-resistant coatings is essential for aerospace and power generation applications, where metallic components are exposed to severe thermal and oxidative stresses at elevated temperatures. In this work, both silicide and aluminide diffusion coatings were developed using proprietary slurry- and vapor-based diffusion coating processes engineered by Shinhwa Metal, enabling systematic control of coating growth kinetics, microstructural evolution, and phase formation. The silicide coatings, specifically tailored for niobium-based alloys in rocket launch vehicle components, effectively mitigated catastrophic oxidation by forming continuous, protective silicide scales. In parallel, aluminide coatings applied to turbine blades facilitated the formation of dense and adherent alumina scales that act as robust diffusion barriers against oxygen ingress. Comprehensive microstructural characterization revealed uniform thickness distribution, strong interfacial adhesion, and well-defined phase assemblages. High-temperature isothermal and cyclic oxidation tests further confirmed excellent scale adherence, thermal stability, and long-term durability. These results demonstrate the technological capability of Shinhwa Metal's proprietary diffusion processes and underscore their potential for deployment in next-generation aerospace propulsion and energy conversion systems.

Acknowledgment:

Keyword: Aluminide coating, Silicide coating, Microstructure, Oxidation

Spheroidization of titanium powders by using a reverse-polarity plasma torch with an exit nozzle

Sun-Woo Kim¹, Hae-Won Park¹, Chang-Woo Park¹, Hyo-Jung Kim¹, and Jun-Ho SEO¹

Department of Applied Plasma and Quantum Beam Engineering, Jeonbuk National University, Korea

In this paper, a reverse-polarity plasma torch with an exit nozzle was proposed as a cost-effective heat source to make the irregularly shaped Ti powders spherical. In our previous work, we have reported that when electrically connecting the rear electrode and front electrode in reverse polarity, hollow electrode plasma torches can produce a laminar-like plasma jet with high enthalpy but relatively low velocities less than 100 m/s at torch exit. In addition, the proposed type of torch can generate plasma flames with relatively large volume due to the nozzle diameter larger than 10 mm. Taking advantage of these unique features of a reverse-polarity plasma torch, a 15 kW class plasma torch system for spheroidization process was designed and titanium powders (75–150 μ m), prepared from scrap via high-energy ball milling, were injected at the position 10 mm from the nozzle exit. From the FE-SEM images for the as-treated powders, it was confirmed that most of the injected powders were spheroidized. These results indicate that although axial injection is impossible, a high enthalpy plasma jet with low velocities and diameters larger than 10 mm can provide the injected powders with many trajectories to be melted and spheroidized during their flight of plasma jet. However, the XRD data showed that small amount of TiO2 was present in the as-spheroidized powders, requiring for the oxygen control in the proposed process.

Gradient cooling approach in vacuum plasma spray coating process for crack formation control in ZrC coating layers on carbon-carbon composite

¹Ho Seok Kim, ^{1,2}A-Young Moon, ^{1,3}Jong Geun Bae, ^{1,2,4}Se Youn Moon *

¹High-enthalpy Plasma Research Center, Jeonbuk National University, Korea

²Department of Applied Plasma and Quantum Beam Engineering, Jeonbuk National University, Korea

³Department of mechanical system engineering, Jeonbuk National University, Korea

⁴Department of Quantum System Engineering, Jeonbuk National University, Korea

* Corresponding author's Email: symoon@jbnu.ac.kr

Abstract: Ultra-high temperature ceramics (UHTCs) are gaining attention as thermal barrier layers for protecting structural materials in extreme environments. Zirconium carbide (ZrC), one of UHTCs, is a promising candidate for aerospace and energy applications due to its high melting point, oxidation resistance, and thermal stability. ZrC coatings are typically fabricated by thermal spray methods such as vacuum plasma spray (VPS), to produce dense coatings under vacuum conditions. However, ZrC coatings often suffer from crack formation caused by steep thermal gradients during rapid cooling. These cracks lower mechanical strength and accelerate oxidation, necessitating effective crack-control strategies.

In this study, a gradient cooling stage was introduced through a post-heating process to mitigate crack formation in ZrC coatings on carbon–carbon composites. Unlike conventional rapid cooling (4.20 °C/s), gradient cooling reduced the cooling rate to approaximately 1.34 °C/s over 100 s after the coating process, decreasing crack density from 0.9 to 0.5 cracks/mm. Through the microstructural characterization, the benefits of gradient cooling approach were confirmed. For example, adhesion strength tests showed no reduction in interfacial bonding due to post-heating. On the other hand, the cross-sectional micro-Vickers hardness increased by 13.2%, while porosity decreased by 10.8% compared to conventional cooling case. XRD analysis further indicated that gradient cooling did not cause ZrC phase transformation or affect interfacial stability.

From the results, the introduction of post-heating with gradient cooling provides a practical method to reduce crack formation with improved coating reliability and durability in UHTC coatings fabricated by VPS for advanced aerospace and energy applications.

Acknowledgment: This research was supported by Korea Basic Science Institute (National research Facilities and Equipment Center) grant funded by the Ministry of Education.(2021R1A6C101B383)

Keywords: Zirconium carbide (ZrC), Vacuum plasma spray (VPS), Crack control, Gradient cooling

Enthalpy probe measurement and numerical investigation on the thermal plasma jets generated by a reverse-polarity plasma torch with an exit nozzle

Sang-Yun BAEK¹, Nam-Gi LEE¹, Dong-Hyun LEE¹, Ye-Gyeom Lee¹, and Jun-Ho SEO¹ Department of Applied Plasma and Quantum Beam Engineering, Jeonbuk National University, Korea

In this paper, enthalpy probe measurements and numerical analyses were conducted to disclose the information on enthalpies, temperatures and velocities of thermal plasma jets generated by a hollow electrode plasma torch with reverse polarity discharge structure. The experimental and numerical setup featured a hollow electrode plasma torch with a cylindrical exit nozzle, which was added coaxially to the cylindrical front electrode with a 1.5 mm gap. With the help of an additional gas injected through the gap between the front electrode and the exit nozzle, this type of plasma torch can produce stable plasma jets at high thermal efficiency. The results revealed that when electrically connected in reverse polarity, hollow electrode plasma torch can be operated at low current-high voltage conditions, resulting in high thermal efficiency and high enthalpy plasma jet. During the measurement experiments, for example, relatively high arc voltages of ~300 V were maintained stably at the arc current of 40 A and the N2 gas flow rate of 40 lpm. For the plasma jets generated at this operation condition, an enthalpy probe with outer and inner diameters of 4.8 mm and 1.0 mm, respectively, was inserted to provide radial profiles of enthalpies, temperatures and velocities of the thermal plasma jets at various positions along jet axis, and the measured results were validated by comparing them with numerical results. Detailed comparison results will be discussed in ATSC 2025.

Machine-Learning Interatomic Potential for Temperature-Dependent Properties of Nb₂AlC MAX Phase as a Bond Coat

¹Hayoung Son, ¹Hyokyeong Kim, ^{1,2}Jiwoong Kim*

Abstract: Nb₂AlC MAX phase combines metallic ductility with ceramic high-temperature stability, making it a promising candidate for bond coat materials in next-generation thermal barrier coating (TBC) systems. However, despite their critical importance under the extreme thermal and mechanical conditions experienced in service, reliable data on its temperature-dependent mechanical properties and thermal expansion behavior remains limited. While ab initio molecular dynamics can provide accurate predictions, the computational cost becomes prohibitively high for large supercells and wide temperature ranges. In this study, we developed a machine learning–based moment tensor potential (MTP) specifically for the Nb₂AlC system and applied it to molecular dynamics simulations. The constructed potential accurately reproduced elastic constants at room temperature and elevated temperatures ($E_z = 247.8$ GPa), showing good agreement with reported experimental and ab initio calculation results ($E_z = 242$ GPa). Furthermore, the thermal expansion coefficient of Nb₂AlC (8.9 × 10⁻⁶ K⁻¹), a key indicator of compatibility in bond coat applications, was captured with high accuracy compared to literature values (8.7×10^{-6} K⁻¹). These results demonstrate that the developed potential efficiently and accurately quantifies the mechanical stability and thermal suitability of Nb₂AlC at the atomic scale. Furthermore, it can serve as a fundamental resource for evaluating the applicability of Nb₂AlC as a bond coat material in TBC systems.

Acknowledgment: This work was supported by Korea Research Institute for defense Technology planning and advancement(KRIT) grant funded by the Korea government(DAPA(Defense Acquisition Program Administration)) (No. KRIT-CT-23-039, Development of multi-component Ultra-High Temperature Ceramic Coating Technology).

Keywords: MAX phase, Molecular dynamics simulation, Bond coat, Machine learning

- 1. M. W. Barsoum, Metall. Mater. Trans. A, 33, 2275-2279 (2002)
- 2. J. Wang, Acta Mater., 56(7), 1551-1518 (2008)

¹ Department of Materials Science and Engineering, Soongsil University, Korea

² Department of Green Chemistry and Materials Engineering, Soongsil University, Korea

^{*} Corresponding author's Email: jwk@ssu.ac.kr

Effect of APS Process Parameter Control on the Microstructure and Thermal Fatigue Characteristics of Thermal Barrier Coatings

¹Cheng Hongbin, ¹Hao Zhijie, ¹Junhyeok Nam, ²Daehan Lee, ²Kyun-Tak Kim*

¹ Department of Materials Convergence and System Engineering, Changwon National Univ., Korea

²R&D Center, Cosmos Metallizing Co.,Ltd., Gyeongnam, Korea

* Corresponding author's Email: woojurnd@woojucoat.com

Abstract: Thermal barrier coatings (TBCs) are commonly used to protect the metal substrates of gas turbines operating at high temperatures. Yttria-stabilized zirconia (YSZ), typically containing 7-8 wt% yttria, is a widely used topcoat due to its low thermal conductivity and excellent thermal stability. It is primarily deposited using the atmospheric plasma spraying (APS) technique. Coating properties, including porosity, thickness, crack morphology, adhesion, and thermal durability, are significantly influenced by process variables, ultimately determining coating quality and service life. Therefore, optimizing the APS process is essential for improving the reliability and service life of turbine components. In this study, various TBC specimens were fabricated using APS by controlling the spray distance, powder feed rate, and deposition rate. The microstructure of the coatings was systematically analyzed and structural differences under various conditions were compared. Furthermore, thermal fatigue tests were performed to evaluate the thermal durability of the coatings. This study led to the identification of optimal deposition parameters for each process condition.

This template is for ATSC 2025 technical abstract. Your abstract should be submitted via our official submission system.

Acknowledgment: This work was supported by the Korea Planning & Evaluation Institute of Industrial Technology (KEIT) grant funded by the Korea government(MOTIE) (RS-2024-00422159, Reliability assessment of thermal barrier coatings under hydrogen combustion and substantiation assessment by a demand company).

Keywords: Gas turbine, Atmospheric plasma spray, Thermal barrier coating, Process parameters, Optimization

Enhanced Oxidation Resistance of ZrC through Multi-Layer Coatings: Ab Initio Calculation of Oxygen Diffusion Pathways

¹Jaewon Choi, ²Hyokyeong Kim, and ^{1,2}Jiwoong Kim*

Department of Green Chemistry and Materials Engineering, Soongsil University, Korea
Department of Materials Science and Engineering, Soongsil University, Korea
* Corresponding author's Email: jwk@ssu.ac.kr

Abstract: Zirconium carbide (ZrC) is a promising candidate for structural applications in extreme environments due to its high melting point, mechanical strength, and thermal stability. However, its rapid oxidation at elevated temperatures limits long-term durability. In this study, ab initio calculation combined with the nudged elastic band (NEB) method were employed to investigate oxygen diffusion behavior in ZrC coatings with varying layer structures. The results reveal that multi-layer ZrC exhibits significantly enhanced oxidation resistance compared to single-layer ZrC. In the ZrC(100)/(100) interface, while bulk-to-surface and surface-to-surface diffusion paths showed higher energy barriers, oxygen preferentially migrated through interfacial regions, leading to reduced overall diffusion. Furthermore, the protective ZrO₂ film formed on the surface provided an additional diffusion barrier, synergistically hindering oxygen penetration. These findings highlight the importance of interface engineering and oxide stabilization in delaying oxidation. This work provides fundamental insights into the design of multi-layer carbide coatings for extreme temperature environments and offers guidance for developing oxidation-resistant protective coatings in advanced energy and aerospace systems.

Acknowledgment: This work was supported by Korea Research Institute for defense Technology planning and advancement(KRIT) grant funded by the Korea government(DAPA(Defense Acquisition Program Administration)) (No. KRIT-CT-23-039, Development of multi-component Ultra-High Temperature Ceramic Coating Technology).

Keywords: ZrC, multi-layer coating, oxidation resistance, oxygen diffusion, ab initio calculation

Mixed Oxide formation in NiCoCrAlY powders and Thermal-Sprayed Coatings: Influence of heat exposure during processing

Sang-In Kim^{1*}, Tae-Hyun Kim¹, Su-Han Bae¹, Se-Yun Kim²

¹ Department of Mechatronics Engineering and Nanomaterials Engineering, Kyungnam University, Changwon 51767, Republic of Korea.

*e-mail of Corresponding Author: kimseyun@kyungnam.ac.kr

Abstract

This study investigates the formation behavior of mixed oxides (MOs) that shorten the service life of thermal barrier coatings (TBCs). Thermally grown oxides (TGOs) can form not only as Al₂O₃ but also as MOs such as Cr₂O₃, NiO, CoO, and spinel, which exhibit higher defect densities and faster growth kinetics than α-Al₂O₃. The formation of MOs accelerates TGO thickening and induces local stress concentration, thereby promoting top coat (TC) delamination. Thus, understanding MO behavior is crucial for ensuring the durability of TBCs. In this study, the oxidation behaviors of NiCoCrAlY (Amdry365-4, ©Metco) powder, thermally spray-coated specimens (High Velocity Oxygen Fuel and Vacuum Plasma Spray), and powders exposed to the heat source during spraying without deposition on the substrate were compared in air at 1000°C. MOs were observed to form earlier in heat-exposed powders and coatings than in the as-received powders, and a schematic of the oxidation behavior was established accordingly. These findings clarify the impact of high-temperature exposure during thermal spraying on MO formation behavior and provide fundamental insights for suppressing abnormal MO formation in future TBC systems.

This study was supported by the Korea Institute of Energy Technology Evaluation and Planning's Energy Human Resources Development Project (RS-2024-KP002514) and the Korea Institute of Industrial Technology Planning and Evaluation's Automotive Industry Technology Development Project (RS-2025-02317513) and Space-K BIG Project Program(RS-2025-16063273) funded by the Korea AeroSpace Administration(KASA).

Keywords

TBC(Thermal Barrier Coating), TGO(Thermally Grown Oxide), MO(Mixed Oxides), Thermal-Spray Coating, MCrAlY(M=Ni, Co)

² Department of Advanced Materials Engineering, Kyungnam University, Changwon 51767, Republic of Korea.

Study on Bond Materials for Protective UHTC Layers on Graphite by Air Plasma Spraying

Neo Kang^a, Patrick Choo^a, Tedd Hwang^a, Yven Chung^a, Seongwon Kim^b, Sik-Chol Kwon^a*

a Bedell Surface Technologies, Namdong-gu, Incheon, S. Korea

b KICET, Ichon, Kyunggi-do, S. Korea

*Corresponding author: kwonsikchol@gmail.com

Abstract: Graphite has long been recognized as an essential material for high-temperature engineering applications, including heat treatment, brazing, sintering, and advanced metallurgical processes. Despite its excellent thermal and mechanical properties, graphite suffers from rapid oxidation above 500 °C in oxygen-containing environments, which significantly limits its long-term performance. To overcome this limitation, a protective multi-layer coating was developed by air plasma spraying (APS) as a preliminary step toward Ultra High Temperature Coatings (UHTCs).

In this study, bond materials of tungsten (W) and molybdenum (Mo) were deposited on graphite substrates, followed by a graded ceramic topcoat of Al_2O_3 —YSZ designed to reduce thermal expansion mismatch. The microstructure and phase composition were examined by SEM and XRD, while hardness and adhesion testing provided insight into mechanical integrity. In addition, thermal cycling experiments were conducted at 1450 °C under controlled vacuum conditions to evaluate high-temperature durability.

The results showed that the Mo bond layer exhibited significantly improved coating quality compared with W. Mo produced denser deposits with lower porosity and stronger adhesion, attributed to favorable wetting on the graphite substrate and the formation of interfacial Mo₂C carbides. In contrast, W layers demonstrated higher porosity, limited carbide formation, and spalling under thermal shock conditions. These findings indicate that the choice of bond material plays a critical role in the stability and performance of protective coatings for graphite.

Overall, this work demonstrates that Mo-based bond layers are more effective than W for improving oxidation resistance of graphite and enhancing coating adhesion. Importantly, the present results establish a scientific foundation and technical pathway for the future design of UHTCs capable of withstanding extreme thermal and oxidative environments, relevant to aerospace, nuclear, and advanced energy applications.

Keywords: Graphite oxidation protection; Bond materials (Mo, W); Ultra High Temperature Coatings (UHTCs)

- 1. Maryam Shojaie-bahaabad et. al, Ceramics International., 50, 9937 (2024).
- 2. J.G. Thakare, et al., Metals and Materials International, 27, 1947 (2021)
- W.G. Fahrenholz, et. al (eds.), Ultra-High Temperature Ceramics: Materials for Extreme Environment Applications, Wiley, 6 (2021).

Influence of Ammonia Combustion Atmosphere on the Durability of Metallic Bond Coat in Thermal Barrier Coating

¹Sohee Baek, ¹Janghyeok Pyeon, ¹Jeong-hyeon Lee, ¹Junhyeok Nam, ¹SeungCheol Yang, ¹Yeon-Gil Jung*,
²Jeong-hun Son, ²Byung-il Yang, ³Kyun-Tak Kim

¹Department of Materials Convergence and System Engineering, Changwon National Univ., Korea

²Research Institute of DNA+, Changwon National Univ., Korea

³R&D Center, Cosmos Metallizing Co.,Ltd., Gyeongnam, Korea

* Corresponding author's Email: jungyg@changwon.ac.kr

Abstract: Ammonia (NH₃) has attracted attention as a promising carbon-free fuel for next-generation gas turbine due to its high volumetric energy density, simple storage, and ease of transport. However, the unburned ammonia, increased water vapor, and corrosive combustion products may have detrimental effects on the turbine components. In particular, the reactive nitrogen species and hydrogen radicals generated during ammonia combustion can severely compromise the durability of metallic bond coat, which is critical to the performance of thermal barrier coating system.

In this study, the thermal behavior of metallic bond coat was systematically investigated under various hightemperature ammonia/nitrogen mixed-gas conditions. The microstructural evolution and chemical stability of metallic bond coats with different compositions were evaluated, focusing on the nitride and oxide formation, elemental diffusion, and coating integrity. The results revealed a unique degradation mechanism of the bond coat in ammonia combustion environments, thereby providing fundamental insights for the development of coating system in carbon-neutral gas turbine.

This template is for ATSC 2025 technical abstract. Your abstract should be submitted via our official submission system.

Acknowledgment: This work was supported by the "Development of Core Technologies for Ammonia-Fueled Gas Turbine Combustors for Power Generation" of KETEP from MOTIE, Republic of Korea [grant number RS-2024-00455846].

Keywords: Gas turbine, Ammonia combustion, Thermal barrier coating, Metallic bond coating

- 1. H. Chen, Corrosion Science 151, 154-162 (2019).
- 2. Tina Ghara, International Journal of Hydrogen Energy 130, 345–359 (2025).

Life Assessment of 8% Yttria-Stabilized Zirconia (YSZ) Thermal Barrier Coating (TBC) Through Isothermal and Thermal Cycling Tests

¹Somi Lee, ¹Yujin Kim, ¹Jongseo Yoon, ¹Siwon Kim, ²Sanghun Kim, ²Kisoo Jang, ²Kyushik Kim, ³Heungsoo Moon, ¹Jaiwon Byeon*

¹Department of Materials Science and Engineering, Seoul National University of Science and Technology, Korea

 $^2 Powder$ Plant Maintenance Engineering Center, KEPCO KPS, Korea $^3 R\&D$ Center, SewonHardfacing Inc., Korea

* Corresponding author's Email: byeonjw@seoultech.ac.kr

Abstract: In the rapidly advancing field of energy technology, raising the turbine inlet temperature (TIT) of gas turbines is essential for improving efficiency and power output to meet the growing global demand. However, higher operating temperatures accelerate the degradation of thermal barrier coatings (TBCs), which are critical for protecting turbine components from severe thermal stresses. Therefore, understanding and predicting the lifetime of TBCs under such conditions is vital for ensuring safe and reliable turbine operation. In this study, the durability of 8% yttria-stabilized zirconia (8YSZ) TBCs was assessed at 1100 °C using two test methods. The isothermal test was conducted in a chamber furnace for up to 1400 h to evaluate oxidation and continuous degradation behavior, while the thermal cycling test, consisting of 10 min heating, 40 min dwelling at 1100 °C, and 10 min air cooling, was repeated up to 1000 cycles to simulate service conditions with thermal shocks. Both tests revealed steady growth of thermally grown oxide (TGO), accompanied by cracking and densification of the top coat. The Al-rich phases in the bond coat were completely depleted before reaching 200 h, marking the stage of internal crack propagation caused by brittle mixed oxides. Under isothermal exposure, degradation progressed gradually without spallation, while thermal cycling accelerated damage, leading to top-coat spallation after 520 cycles. These results highlight differences in TGO growth and spallation behavior, providing important insights for TBC reliability assessment.

Acknowledgment:

This research was supported by KEPCO KPS.

Keywords: Thermal Barrier Coatings (TBC), Thermal Cycling, Isothermal Test, Thermally Grown Oxide (TGO)

- G. An, Y. Zhang, H. Chen and J. Li, Surf. Coat. Technol., 421, 127419 (2021).
- 2. J. Jung, S. H. Kim and Y. S. Oh, J. Korean Ceram. Soc., 55(6), 527 (2018).
- 3. R. Liu, M. Zhou and H. Zhang, J. Adv. Ceram., 13, 9220969 (2024).

CFD Analysis of Particle Heating in VPS of MCrAlY under Ar-H₂ Mixed Plasmas

^{1,2}Byeongryun Jeon, ¹Byeong-il Min, ¹Sunghun Lee, ¹Eungsun Byon, ¹Hunkwan Park*

¹Extreme Materials Research Institute, Korea Institute of Materials Science, Korea

²School of Mechanical Engineering, Pusan National University, Korea

* Corresponding author's Email: hkpark@kims.re.kr

Abstract: Vacuum plasma spraying (VPS) offers a controlled, low-oxygen environment to consolidate MCrAIY coatings for oxidation- and corrosion-resistant applications. Yet, how Ar-H₂ plasma composition governs the thermal and kinematic history of injected particles—and thereby porosity and oxide formation in the deposit—remains quantitatively underexplored.

We establish a coupled thermal-plasma/Discrete Phase Model framework to predict arc-jet fields and Lagrangian particle trajectories in a 3D torch-to-substrate domain [1]. We further implement the threshold restrike model coupled to the thermal-plasma solver [2]. Thermodynamic and transport properties are evaluated for Ar/H₂ mixtures assuming LTE, and radiative as well as Joule heating effects are accounted for [2]. Parametric sweeps over argon flow (30–50 L·min⁻¹) and hydrogen addition (9–14 L·min⁻¹) reveal counteracting trends: increasing Ar raises jet momentum and particle impact velocity while moderating particle temperature, which correlates with reduced in-flight oxidation and lower pore content; conversely, additional H₂ elevates particle enthalpy but diminishes acceleration, intensifying oxide formation at splat interfaces. These predictions are consistent with ex-situ compositional mapping that indicates greater intersplat oxide fraction at higher H₂ settings. The analysis highlights hydrogen flow rate as the most sensitive knob for suppressing oxidation without sacrificing particle melting, and delineates operating windows that balance temperature–velocity trade-offs for dense, low-oxide MCrAlY coatings.

Keywords: Numerical Simulation, OpenFoam, LTE Assumption, Vacuum Plasma Spraying, Restrike Model.

- 1. H. Kwon et al., ACS Catal., 13, 2619-2630 (2023).
- 2. Perambadur et al., J. Therm. Spray Technol., 33, 2526–2547 (2024).
- 2. A. B. Murphy and C. J. Arundell, Plasma Chem. Plasma Process., 14, 451-490 (1994).

Analysis of oxidation behavior according to addition of Ta or Hf/Si in Thermal barrier coating Bond Coat powder

¹Suhan Bae, ¹Sangin Kim, ¹Taehyeon Kim, ²Seyun Kim*

¹Department of Mechatronics Engineering and Nanomaterials Engineering, Kyungnam University, Changwon 51767, Republic of Korea

²Department of Advanced Materials Engineering, , Kyungnam University, Changwon 51767, Republic of Korea

* Corresponding author's Email: Seyun Kim, kimseyun@kyungnam.ac.kr

Abstract: This study aimed to analyze the high-temperature oxidation behavior when Ta and Hf/Si were added to the NiCoCrAlY powder, which is a commercial powder for the Bond Coat layer of the TBC (Thermal Barrier Coatings) system. In the TBC system, the Thermally Grown Oxide (TGO) can be formed not only from α-Al₂O₃ but also from mixed oxides (Mixed Oxides, MO) such as Cr₂O₃, NiO, and Spinel. The formation of mixed oxides accelerates the thickness of the TGO and promotes its peeling from the TC (Top Coat) layer, so understanding the formation and growth behavior of mixed oxides is crucial for securing the TBC life. The experiment was conducted on NiCoCrAlY-Ta (Amdry997, ©Metco) and NiCoCrAlY-Hf,Si (Amdry386-2.5, ©Metco) powders and compared with the oxidation behavior of existing commercial powders by conducting isothermal oxidation

tests in air at 1000°C and 1100°C. The oxidation behavior was analyzed by field emission scanning electron

microscopy (FE-SEM), energy dispersive spectrometry (SEM-EDS), and X-ray diffraction (XRD). The experimental results showed that α -Al₂O₃ was the main oxide at the beginning (50 h), and local Ta-rich and Hfrich oxides were observed at the interface between α -Al₂O₃ and the powder and near the grain boundaries. In addition, we aimed to analyze the formation of a PEG structure that was not observed in existing commercial powders but appeared due to the addition of Ta and Hf. The results of the TGO thickness measurement after the

 1000°C oxidation test were compared with the results of a previous study measuring the thickness of existing

commercial powders, and the effects of Al content and PEG structure formation were analyzed.

Acknowledgment: This study was supported by the Korea Institute of Energy Technology Evaluation and Planning's Energy Human Resources Development Project (RS-2024-KP002514) and the Korea Institute of Industrial Technology Planning and Evaluation's Automotive Industry Technology Development Project (RS-2025-02317513) and Space-K BIG Project Program(RS-2025-16063273) funded by the Korea AeroSpace Administration(KASA).

Keywords: TBC(Thermal Barrier Coatings), Bond Coat, TGO(Thermally Grown Oxide), NiCoCrAlY-Ta, NiCoCrAlY-Hf,Si

Granular Manufacturing Technology and APS Coating and Evaluation Study for Yb-Disilicate Spray Coating for Environmental Barrier Coating.

¹Woojin Cho, ¹Minsik Kim, ¹Jiyoo Kim, ¹Heungsoo Moon*

¹Affiliated Research Institute, Sewon-Hardfacing Inc., Republic of Korea * Corresponding author's Email: ceramic@sewon-hf.com

Abstract: This study introduces a technology for manufacturing Ytterbium-disilicate($Yb_2Si_2O_7$) for environmental barrier coating as granules for thermal spray coating. In addition, through this granule, a coating layer is formed by the APS coating method, and high temperature characteristics(Burner rig test) are evaluated with the formed coating layer to discuss the results.

Keywords: Ytterbium-disilicate(Yb2Si2O7), Environmental barrier coating, APS, Burner rig test.

90 Domestic & Global Customers

Xi'an, China Xi'an, China

SHIN HWA METAL CO., LTD Since 1986

Equipment

HVOF, Plasma Spray, Flame Spray, ARC Spray

• Main Coating Materials

Metals, Ceramics, Cermets, Self-Flux Alloys, Copper Alloys, Aluminum Alloys, etc.

• Major Application Fields

Steelmaking, Petrochemical Industry, Shipbuilding, Power Generation, and various other industrial sectors.

We are a specialized surface-modification company that utilizes thermal spray technology to enhance industrial machinery and equipment components with superior surface properties — including wear resistance, corrosion resistance, electrical insulation, electrical conductivity, and thermal insulation

SHINHWA METAL CO., LTD., 10, Dasan-ro 105beon-gil, Saha-gu, Busan, Korea T:+82-51-266-6404~7/F:+82-51-266-6408 Http://www.shinhwametal.co.kr

Company seeking the highest quality [Ceramic/WC Coating, Metalizing, Non-Slip Coating]

생산제품

인증현황

ATSC 2025 Secretariat

Address: 9F, 120, Achasan-ro, Seongdong-gu, Seoul, Korea Tel.: +82-42-489-7070 E-mail: secretariat@atsc2025.org